EN

Wall-hung gas condensing boilers

Quinta Pro 30 - 45 - 65 - 90 - 115

Installation and Service Manual

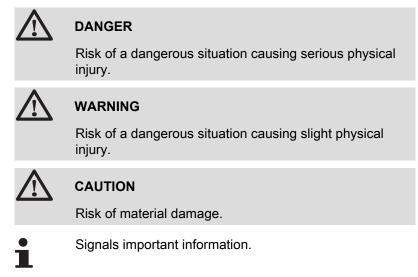
The device complies with the standard type described in the EG declaration of conformity. It was manufactured and commissioned in accordance with European directives.

The original of the declaration of compliance is available from the manufacturer.

Contents

1	Introduction			6
	1	1.1	Used symbols	6
	1	1.2	Abbreviations	6
	1	1.3	General	6
			1.3.1Manufacturer's liability1.3.2Installer's liability	
			1.3.2Installer's liability1.3.3User's liability	
	1	1.4	Homologations	8
			1.4.1 Certifications	8
			1.4.2 Equipment categories	
			1.4.3 Additional Directives	
			1.4.4 Factory test	8
2	Safety instructions and r	ecc	ommendations	9
	2	2.1	Safety instructions	9
	2	2.2	Recommendations	9
3	Technical description			11
	3	3.1	General description	11
	3	3.2	Main parts	11
	3	3.3	Operating principle	11
			3.3.1 Shunt pump	11
			3.3.2 System in cascade	
			3.3.3 Calorifier connection	
			3.3.4 Water flow rate	12
	3	3.4	Technical characteristics	12
4	Installation			15
	4	4.1	Regulations governing installation	15
	4	1.2	Package list	
			•	
			4.2.1Standard delivery4.2.2Accessories	
	2	4.3	Choice of the location	16
			4.3.1 Data plate	16
			4.3.2 Location of the appliance	17
			4.3.3 Ventilation	
			4.3.4 Main dimensions	18

4.4	Positio	oning the boiler	19
4.5	Hydrau	ulic connections	19
	4.5.1	Flushing the system	19
	4.5.2	Connection of the heating circuit	
	4.5.3	Connecting the expansion vessel	
	4.5.4	Connecting the condensate discharge pipe	
4.6	Gas co	onnection	22
4.7		ctions for the air and exhaust	
	pipes .		22
	4.7.1	Classification	22
	4.7.2	Outlets	
	4.7.3	Lengths of the air/flue gas pipes	
	4.7.4	Additional Directives	
	4.7.5	Connection of the combustion gas exhaust	20
	4.7.5	pipe	26
4.8	Floctri	cal connections	26
. .0			
	4.8.1	Control unit	
	4.8.2	Recommendations	
	4.8.3	Standard control PCB	
	4.8.4	Connecting the pump	
	4.8.5	Connecting a third party control unit	
	4.8.6	Connecting the outside temperature sensor	32
	4.8.7	Connect frost protection	32
	4.8.8	Connecting the calorifier sensor/thermostat	33
	4.8.9	PC/Laptop connection	
	4.8.10	Shutdown input	
	4.8.11	Release input	
4.9	Option	al electrical connections	35
	4.9.1	Box for the control PCBs	35
	4.9.2	Connection options for the 0-10 V control PCB	
	7.5.2	(IF-01)	36
	4.9.3	Connection possibilities for the PCB (SCU-	
	4.9.5	S02)	27
	4.9.4	Connection possibilities for the PCB (SCU-	
	4.3.4	S03)	30
	4.9.5	Connection possibilities for the PCB (SCU-	
	4.9.5		20
	400	X01) Connection possibilities for the PCB (SCU-	
	4.9.6		40
	407	X02)	40
	4.9.7	Connection possibilities for the PCB (SCU-	
	4.9.8	X03) Connection possibilities for the PCB (c-Mix)	
4.10	Electri	cal diagram	43
4.11	Filling	the system	44
	4.11.1	Water treatment	44
	4.11.2	Filling the siphon	
	4.11.3	Filling the system	


5	Start-up		46
		5.1	Control panel46
			5.1.1 Functions of the keys46
			5.1.2 Meaning of the symbols on the display46
		5.2	Check points before commissioning47
			5.2.1 Preparing the boiler for commissioning47
			5.2.2 Gas circuit
			5.2.3 Hydraulic circuit
		5.3	
			Putting the appliance into operation48
		5.4	Gas settings50
			5.4.1 Adapting to another gas type50
			5.4.2 Setting the air/gas ratio (Full load)
			5.4.3 Setting the air/gas ratio (Part load)51
		5.5	Finalizing work52
		5.6	Reading out measured values53
			5.6.1 Reading the various current values53
			5.6.2 Readout from the hour counter and percentage of
			successful starts
			5.6.3 Status and sub-status55
		5.7	Changing the settings56
			5.7.1 Description of the parameters
			5.7.2 Modification of the user-level parameters
			5.7.3 Modification of the installer-level parameters595.7.4 Setting the maximum heat input for central heating
			operation
			5.7.5 Return to the factory settings "Reset Param"61
			5.7.6 Carrying out an auto-detect
			5.7.7 Setting the manual mode62
6	Switching off the app	liance	
	0 11	6.1	Installation shutdown63
		-	
		6.2	Frost protection63
7	Checking and mainter	nance	64
		7.1	Maintenance message64
		7.2	Preventive maintenance with automated "service message"64
			7.2.1 Resetting the automatic maintenance
			message
			7.2.2 Dealing with the next maintenance message and starting the new maintenance period

7	7.3	Standard inspection and maintenance operations				
		7.3.1	Checking the hydraulic pressure	66		
		7.3.2	Checking the ionisation current			
		7.3.3	Checking the tightness of the combusted gases			
			evacuation and air inlet connections			
		7.3.4 7.3.5	Checking combustion Checking the automatic air vent			
		7.3.5	Checking the siphon			
		7.3.7	Checking the burner and cleaning the heat	00		
			exchanger	69		
7	7.4	Specif	fic maintenance operations	70		
		7.4.1	Inspection of the ignition electrode	70		
		7.4.2	Replacing the non-return valve			
		7.4.3	Assembling the boiler	72		
Troubleshooting				73		
8	8.1	Error	codes	73		
٤	8.2	Shutd	owns and lock-outs	76		
		8.2.1	Blockage	76		
		8.2.2	Lock-out			
8	8.3	Error	memory	78		
		8.3.1	Error readout memorised	79		
		8.3.2	Deletion of the error display	80		
Spare parts				81		
(9.1	Gener	al	81		
c	9.2	Snaro	parts	81		
	0.2	Opure				
Checklists				86		
	10.1	Check	list for commissioning	86		
	10.2		klist for periodic inspection and enance	87		

1 Introduction

1.1 Used symbols

In these instructions, various danger levels are employed to draw the user's attention to particular information. In so doing, we wish to safeguard the user's safety, obviate hazards and guarantee correct operation of the appliance.

Signals a referral to other instructions or other pages in the instructions.

1.2 Abbreviations

- Central heating: Central heating
- PCU: Primary Control Unit PCB for managing burner operation
- SCU: Secondary Control Unit Electronic printed circuit board for extra connections
- PWM: Pulse Wide Modulation

1.3 General

1.3.1. Manufacturer's liability

Our products are manufactured in compliance with the requirements of the various european applicable Directives. They are therefore

delivered with **(€** marking and all relevant documentation.

In the interest of customers, we are continuously endeavouring to make improvements in product quality. All the specifications stated in this document are therefore subject to change without notice.

Our liability as the manufacturer may not be invoked in the following cases:

- Failure to abide by the instructions on using the appliance.
- Faulty or insufficient maintenance of the appliance.
- Failure to abide by the instructions on installing the appliance.

1.3.2. Installer's liability

The installer is responsible for the installation and initial start up of the appliance. The installer must respect the following instructions:

- Read and follow the instructions given in the manuals provided with the appliance.
- Carry out installation in compliance with the prevailing legislation and standards.
- > Perform the initial start up and carry out any checks necessary.
- Explain the installation to the user.
- If a maintenance is necessary, warn the user of the obligation to check the appliance and maintain it in good working order.
- Give all the instruction manuals to the user.

1.3.3. User's liability

To guarantee optimum operation of the appliance, the user must respect the following instructions:

- Read and abide by the instructions given in the user manual.
- Call on qualified professionals to carry out installation and initial start up.
- Get your fitter to explain your installation to you.
- Have the required checks and services done.
- Keep the instruction manuals in good condition close to the appliance.

This appliance is not intended to be used by persons (including children) whose physcial, sensory or mental capacity is impaired or persons with no experience or knowledge, unless they have the benefit, through the intermediary of a person responsible for their safety, of supervision or prior instructions regarding use of the appliance. Care should be taken to ensure that children do not play with the appliance.

1.4 Homologations

1.4.1. Certifications

CE identification no	PIN 0063CL3333
NOx classification	5 (EN 297 pr A3, EN 656)
Type of connection (Flue gas outlet)	B ₂₃ , B _{23P} , B ₃₃ , C ₁₃ , C ₃₃ , C ₄₃ , C ₅₃ , C ₆₃ , C ₈₃ , C ₉₃

1.4.2. Equipment categories

Gas category	Gas type	Connection pressure (mbar)
II _{2H3P}	G20 (Gas H)	20
	G31 (Propane)	37/50

1.4.3. Additional Directives

Apart from the legal provisions and Directives, the additional Directives described in these instructions must also be observed.

For all provisions and Directives referred to in these instructions, it is agreed that all addenda or subsequent provisions will apply at the time of installation.

1.4.4. Factory test

Before leaving the factory, each boiler is set for optimum performance and tested to check the following items:

- Electrical safety
- Adjustment (CO₂)
- Water tightness
- Gas tightness
- Parameter settings

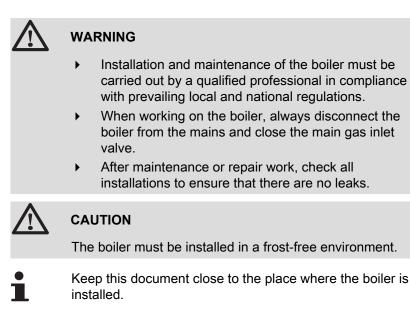
2 Safety instructions and recommendations

2.1 Safety instructions

DANGER

If you smell gas:

- 1. Do not use a naked flame, do not smoke, do not operate electrical contacts or switches (doorbell, light, motor, lift, etc..).
- 2. Isolate the gas supply.
- 3. Open the windows.
- 4. Report any leaks immediately.
- 5. Trace possible leaks and seal them immediately.
- 6. If the gas leak is before the gas meter, contact the gas supplier.



DANGER

If you smell flue gases:

- 1. Switch the appliance off.
- 2. Open the windows.
- 3. Report any leaks immediately.
- 4. Trace possible leaks and seal them immediately.

2.2 Recommendations

Casing components

Only remove the casing for maintenance and repair operations. Put the casing back in place after maintenance and repair operations.

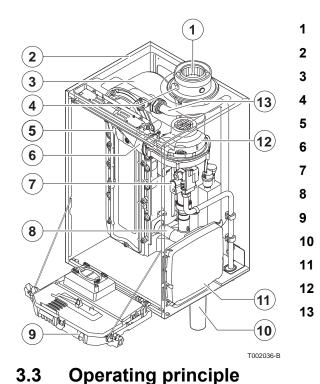
Instructions stickers

The instructions and warnings affixed to the appliance must never be removed or covered and must remain legible during the entire lifespan of the boiler. Immediately replace damaged or illegible instructions and warning stickers.

Modifications

Modifications may only be made to the boiler after the written permission of **Remeha B.V.** to do so.

IR remeha


3 Technical description

3.1 General description

High-efficiency wall-hung condensing gas boilers

- High efficiency heating (Production of domestic hot water can be ensured by a separate hot water calorifier).
- Low pollutant emissions.
- Very suitable for cascade systems with several boilers.

3.2 Main parts

Flue gas outlet / Air intake Casing/air box Heat exchanger (Central heating) Outlet for measuring combustion gases Ignition/ionization electrode Mixer pipe Combined venturi and gas valve unit Áir intake silencer Instrument box Siphon Box for the control PCBs Fan Water flow pipe

3.3.1. Shunt pump

The boiler is supplied without a pump. When choosing a pump, take account of the boiler resistance and system resistance.

See chapter: "Technical characteristics", page 12.

If possible, install the pump directly under the boiler on the return connection.

See chapter: "Connection of the heating circuit", page 20.

CAUTION

The pump may have a maximum input of 200 W. Use an auxiliary relay for a pump with a larger input.

3.3.2. System in cascade

The boiler is ideally suited for a cascade system. There are a number of standard solutions available. For example:

- Cascade sets (quick assembly) for the installation of 2 to 6 boilers next to each other or 3 to 6 boilers mounted back to back on a freestanding frame. When the boilers are mounted next to each other, they can be mounted either on the wall or on a free-standing frame.
- Low loss headers for a cascade system of 2 or 3 boilers (Quinta Pro 45 and/or Quinta Pro 65). The flow and return of each boiler can be directly connected to these.

Please contact us for further information.

3.3.3. Calorifier connection

A calorifier can be connected to the boiler. Our product range includes various calorifiers.

Please contact us for further information.

The calorifier can be connected to the boiler in two ways:

- Using a three-way valve.
- Using a calorifier pump.

3.3.4. Water flow rate

The boiler's modulating control system limits the maximum difference in temperature between the heating flow and return and the maximum speed at which the flow temperature increases. For this reason the boiler is, so to speak, insensitive to a flow which is too low. In all cases, maintain a minimum water flow of $0.4 \text{ m}^3/\text{h}$.

3.4 Technical characteristics

Boiler type	Quinta Pro	30	45	65	90	115
General						
EC indentification no.	PIN			0063CL33	33	
Flow rate setting	Adjustable		Modul	ating, Start/St	top, 0 - 10 V	
(1) Front panel removed	*	•				

Boiler type	Quinta Pro		30	45	65	90	115
Nominal output (Pn)	minimum- maximum	kW	8.0 - 29.3	8.0 - 40.0	12.0 - 61.0	14.1 - 84.2	16.6 - 107.0
Heating System (80/60 °C)	Factory setting	kW	29.3	40.0	61.0	84.2	107.0
Nominal output (Pn)	minimum- maximum	kW	8.9 - 31.4	8.9 - 43.0	13.3 - 65.0	15.8 - 89.5	18.4 - 114.0
Heating System (50/30 °C)	Factory setting	kW	31.4	43.0	65.0	89.5	114.0
Nominal input (Qn)	minimum- maximum	kW	8.2 - 30.0	8.2 - 41.2	12.2 - 62.0	14.6 - 86.0	17.2 - 110.2
Heating System (Hi)	Factory setting	kW	30.0	41.2	62.0	86.0	110,2
Nominal input(Qn)	minimum- maximum	kW	9.1 - 33.3	9.1 - 45.7	13.6 - 68.8	16.2 - 95.5	19.1 - 122.4
Heating System (Hs)	Factory setting	kW	33.3	45.7	68.8	95.5	122.4
Heating efficiency under full load (Hi) (80/60 °C)	-	%	97.5	97.2	98.3	97.9	96.6
Heating efficiency under full load (Hi) (50/30 °C)	-	%	102.9	102.9	104.6	104.1	102.5
Heating efficiency under partial load (Hi) (Return temperature 60°C)	-	%	97.5	97.5	98.3	96.6	96.5
Heating efficiency under partial load (EN 92/42)(Return temperature 30°C)	-	%	107.7	107.7	108.9	108.1	107.1
Data on the gases and combusti	on gases Equij	oment cat	egories: II	2H3			
NOx-Emission per year or (EN 483)		mg/kWh	<35	<37	<32	< 39	<39
Gas inlet pressure G20 (Gas H)	minimum- maximum	mbar			17- 30		
Gas inlet pressure G31 (Propane)	minimum- maximum	mbar			37 - 50		
Gas consumption G20 (Gas H)	minimum- maximum	m ³ /h	0.9 - 3.3	0.9 - 4.4	1.3 - 6.6	1.5 - 9.1	1.8 - 11.7
Gas consumption G31 (Propane)	minimum- maximum	m ³ /h	0.3 - 1.3	0.3 - 1.7	0.5 - 2.5	0.6 - 3.5	0.6 - 4.7
Mass flue gas flow rate	minimum- maximum	kg/h	14 - 50	14 - 69	21 - 104	28 - 138	36 - 178
Flue gas temperature	minimum- maximum	°C	30- 65	30 - 67	30 - 68	30 - 68	30 - 72
Maximum counter pressure		Pa	70	150	100	160	220
Characteristics of the heating cir	rcuit		-	-	2		
Water content		1	5.5	5.5	6.5	7.5	7.5
Water operating pressure	minimum	bar			0,8		
Water operating pressure (Open vented)	minimum	bar	0.3	0.3	0.3	0.3	0.5
Water operating pressure (PMS)	maximum	bar			4.0		
Water temperature	maximum	°C			110		
Water temperature (Open vented)	maximum	°C			95		
Operating temperature	maximum	°C			90		
Operating temperature (Open vented)	maximum	°C		-	80		
Water resistance ($\Delta T = 20K$)		mbar	70	90	130	140	250
Electrical characteristics			1				
Power supply voltage		VAC/Hz			230/50		
Power consumption - Full load	maximum	W	39	68	88	125	199
Power consumption - Part load	maximum	W	18	18	23	20	45
Power consumption - Standby	maximum	W	5	5	6	4	7
(1) Front panel removed							

3. Technical description

Boiler type	Quinta Pro		30	45	65	90	115
Electrical protection index		IP		•	X4D	-	•
Other characteristics	Other characteristics						
Weight (empty)	Total	kg	53	53	60	67	68
	Mounting ⁽¹⁾	kg	49	49	56	65	65
Acoustic level at 1 meter		dB(A)	38	45	45	52	51
(1) Front panel removed							

4 Installation

4.1 Regulations governing installation

WARNING

Installation of the appliance must be done by a qualified engineer in accordance with prevailing local and national regulations. The engineer must be Gas Safe registered and have the correct ACS qualifications.

4.2 Package list

4.2.1. Standard delivery

The delivery includes:

- > The boiler, fitted with a connection cable
- Connection cable for pump
- Mounting rail and mounting accessories for wall mounting
- Mounting template
- Installation and Service Manual

These installation and maintenance instructions deal only with the items included in a standard delivery. For installation and assembly of any accessories supplied with the boiler, see the relevant installation/assembly instructions.

4.2.2. Accessories


Description
Remeha Celcia 10 on/off thermostat
Remeha Celcia 15 basic modulating control system
Remeha iSense extended modulating control system
Cascade controller
Outside temperature sensor
Flue kit
Combustion gas adapter 80/80 (Quinta Pro 30/45)
Combustion gas adapter 100/100 (Quinta Pro 65/90/115)
Calorifier tank
Kit for connection to the water heater
DHW sensor
Modulating pump
3 -speed pump

Description
Flue gas thermostat
Cascade set (For fitting a Quinta Pro boiler in a Quinta cascade frame)
Cascade set
Duo and Trio low loss headers
Various control PCBs
Protective cover for the connections
Exchanger cleaning tool
Maintenance box
Recom communication kit

4.3 Choice of the location

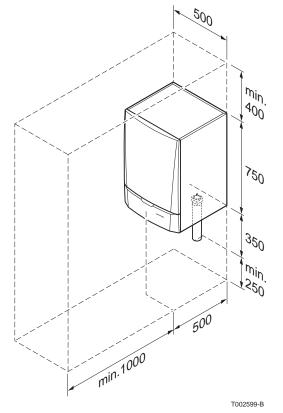
4.3.1. Data plate

The data plate located on top of the boiler provides important information on the appliance: serial number, model, gas category, etc.

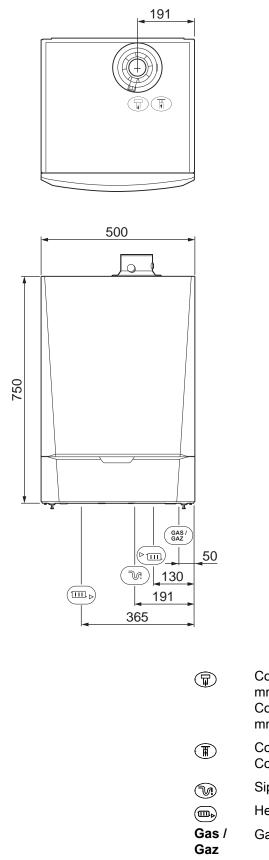
4.3.2. Location of the appliance

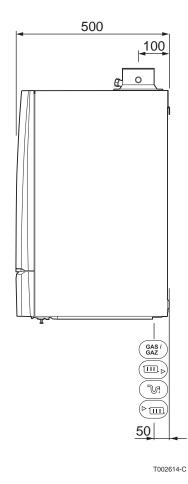
- Before mounting the boiler, decide on the ideal position for mounting, bearing the Directives and the dimensions of the appliance in mind.
- When choosing the position for mounting the boiler, bear in mind the authorised position of the combustion gas discharge outlets and the air intake opening.
- To ensure adequate accessibility to the appliance and facilitate maintenance, leave enough space around the boiler.

WARNING


- Fix the appliance to a solid wall capable of bearing the weight of the appliance when full of water and fully equipped.
- It is forbidden to store inflammable products and materials in the boiler room or close to the boiler, even temporarily.

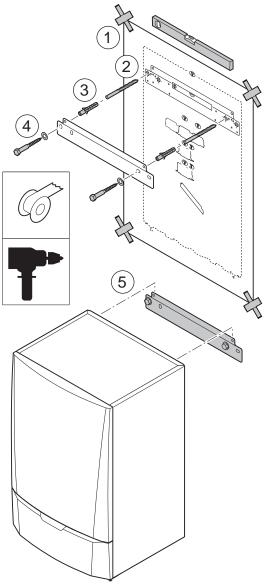
CAUTION


- The boiler must be installed in a frost-free environment.
- An earthed electrical connection must be available close to the boiler.
- A connection to the mains drainage system for the discharge of condensate must be available close to the boiler.


4.3.3. Ventilation

If the boiler is installed in a compartment, the installation and ventilation must comply with BS 5540 (part 1 + 2), BS 6640 and IGUP/ 10.

4.3.4. Main dimensions



Connection of the combustion gas exhaust pipe ; Ø 80 mm (≤ 45 kW) Connection of the combustion gas exhaust pipe ; Ø 100 mm (≥ 65 kW)

- Connection of the air intake pipe ; Ø 125 mm (\leq 45 kW) Connection of the air intake pipe ; Ø 150 mm (\geq 65 kW)
 - Siphon connection bush
 - Heating circuit return ; 1 1/4" Male thread
 - Gas connection ; ¾" Male thread
- (Finite) Heating circuit flow ; 1 ¼" Male thread

4.4 **Positioning the boiler**

The boiler is delivered with a mounting template.

A suspension clamp situated at the rear of the casing enables the boiler to be directly suspended on the mounting bracket.

1. Position the mounting template to the wall with adhesive tape.

CAUTION

- Using a spirit level, check that the mounting axis is perfectly horizontal.
- During mounting, cover up the connection points for the air supply and the combustion gas exhaust, to protect the boiler and its connections from dust. Only remove this protection at the time when these connections are made.
- 2. Drill 2 holes with a Ø of 10 mm.
- 3. Insert the Ø 10 mm rawplugs.
- 4. Attach the mounting bracket to the wall with the \emptyset 10 mm bolts provided.
- 5. Hang the boiler on the mounting bracket.

T001540-A

4.5 Hydraulic connections

4.5.1. Flushing the system

The installation must be cleaned and flushed according to BS 7593 (2006).

- Installing the boiler in new installations (installations less than 6 months old)
- Clean the installation with a universal cleaner to eliminate debris from the appliance (copper, flaxen thread, flux).

- Thoroughly flush the installation until the water runs clear and shows no impurities.
- Installing the boiler in existing installations
- Remove sludge from the installation.
- Flush the installation.
- Clean the installation with a universal cleaner to eliminate debris from the appliance (copper, flaxen thread, flux).
- Thoroughly flush the installation until the water runs clear and shows no impurities.
- i
- Suitable chemicals and their use should be discussed with specialist water treatment companies in respect to aluminium heat exchangers.

4.5.2. Connection of the heating circuit

- 1. Remove the anti-dust plug located on the heating outlet connection (*) under the boiler.
- 2. Connect the heating water outlet pipe to the heating flow connection.
- 3. Install a filling and drainage valve on the installation for filling and draining the boiler.
- 4. Remove the anti-dust button located on the heating return connection () under the boiler.
- 5. Connect the heating water return pipe to the heating return connection.
- 6. Fit the pump in the return pipe (if possible).

For the electrical connection of the pump, see chapter: "Connecting the pump", page 29

To facilitate maintenance work, we recommend mounting a shut off valve on the heating flow and return pipes.

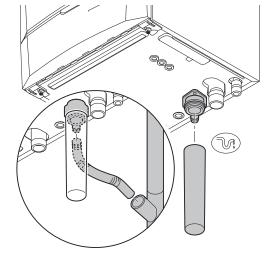
CAUTION

- The heating pipe must be mounted in accordance with prevailing provisions.
- If installing shut off valves, position the filling/ drainage valve, the expansion vessel and the safety valve between the shut off valves and the boiler.
- When installing open vented systems, the cold feed and expansion tank heights must comply with the requirements laid down in the Health and Safety Executive publication PM5. The Quinta Pro boilers require a minimum static head of 3 (Quinta Pro 30/45/65/90) or 5 (Quinta Pro 115) m.

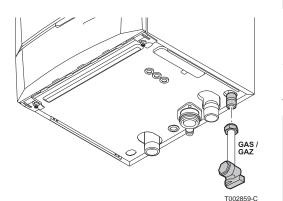
4.5.3. Connecting the expansion vessel

Install the expansion vessel on the heating return pipe .

4.5.4. Connecting the condensate discharge pipe


- 1. Fit the condensate drain hose and the syphon of the boiler: these are supplied separately.
- 2. Mount a standard drainage pipe, Ø 32 mm or more, leading to the mains drainage system.
- 3. Insert into this the hose of the condensate drain (1).
- 4. Mount a trap or a siphon in the discharge pipe.

CAUTION


Do not make a fixed connection owing to maintenance work on the siphon.

- Do not plug the condensate discharge pipe.
- Set the discharge pipe at a gradient of at least 30 mm per metre, maximum horizontal length 5 metres.
- Do not drain condensation water into a roof gutter at any time.
- Connect the condensate discharge pipe in accordance with prevailing standards.

T002858-B

4.6 Gas connection

WARNING

- Close the main gas valve before starting work on the gas pipes.
- Before mounting, check that the gas meter has sufficient capacity. To do this, you should keep in mind the consumption of all appliances.
- If the gas meter has too low a capacity, inform the energy supply company.
- 1. Remove the anti-dust plug from the **GAS/GAZ** gas inlet pipe under the boiler.
- 2. Connect the gas inlet pipe.
- 3. Mount a gas isolation valve on this pipe, directly under the boiler.
- 4. Connect the gas pipe to the gas shut off valve.

CAUTION

- Ensure that there is no dust in the gas pipe.
- We recommend installing a gas filter on the gas pipe to prevent clogging of the gas valve unit.
- Connect the gas pipe in accordance with prevailing standards and regulations.

4.7 Connections for the air and exhaust pipes

The boiler is suitable for connection to the following types of combustible gases.

See chapter: "Certifications", page 8.

4.7.1. Classification

The table specifies this classification in detail according to $\boldsymbol{\zeta} \in \boldsymbol{\xi}$.

Туре	Execution	Description
B23	open	Without fire-stop approval.
B23P ⁽¹⁾		 Exhaust of combustion gases above the roof.
		Air in the installation room.
B33	open	Without fire-stop approval.
		Common exhaust of combustion gases above the roof.
		 Common exhaust of combustion gases mixed in the air, air in the installation room (special construction).
C13	closed	 Vent in the outside wall.
		The opening for the air-supply inlet is located in the same pressure zone as the vent (For example, a common passage through the outside wall).
(1) Includ	ding the pressure	classification P1
		on by pressure reduction
	nder pressure of 4	
(4) See t	able for minimum	sizes of duct or sleeving

ne vent (For example,
CLV):
ust system.
ommon combustion
sleeve:
one as the vent.

Туре	Execution	Minimum size of the duct or jacket.				
C93		Diameter	Ø Channel (Without air-supply)	Ø Channel (With air-supply)	 Channel (Without air-supply) 	□ Channel (With air-supply)
	Rigid	60 mm	110 mm	120 mm	110 x 110 mm	110 x 110 mm
		80 mm	130 mm	140 mm	130 x 130 mm	130 x 130 mm
		100 mm	160 mm	170 mm	160 x 160 mm	160 x 160 mm
	Flexible	60 mm	110 mm	120 mm	110 x 110 mm	110 x 110 mm
		80 mm	130 mm	145 mm	130 x 130 mm	130 x 130 mm
		100 mm	160 mm	170 mm	160 x 160 mm	160 x 160 mm
	Concentric	60/100 mm	120 mm	120 mm	120 x 120 mm	120 x 120 mm
		80/125 mm	145 mm	145 mm	145 x 145 mm	145 x 145 mm
		100/150 mm	170 mm	170 mm	170 x 170 mm	170 x 170 mm

4.7.2. **Outlets**

For exhausting combustion gases of types C1, C3 and C5, it is appropriate to use a M&G Skyline / Mugro 3000 or a Coxstand E HR. When exhausting combustion gases of type C6, the material of the exhaust must conform with Gastec QA and/or be provided with CE marking.

The exhaust vent for combustion gases must conform to EN 1856-1. The construction of the equipment for exhausting the combustion gases must be calculated conforming to EN 13384 (parts 1 & 2).

For open exhaust of combustion gases above the roof, the vent must always be provided with a suitable RVS wire grill.

4.7.3. Lengths of the air/flue gas pipes

The boiler is also suitable for longer chimney lengths with diameters other than those indicated in the table. Please contact us for further information.

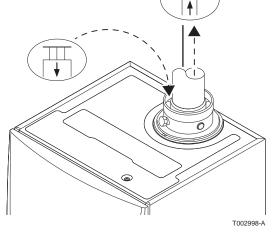
Open flue (B23, B23P, B33)

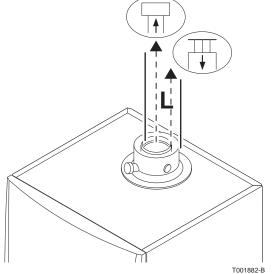
If using an open version, the air supply opening remains open; only the combustion gas opening is connected. The boiler then takes in the combustion air required directly from the premises in which it is installed.

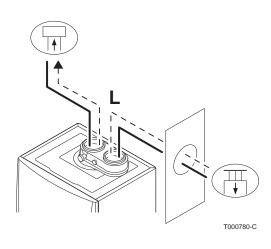
CAUTION

- The air supply opening must remain open.
- The premises in which the appliance is installed must be fitted with the necessary air supply openings. They must not be reduced or closed.

	Maximum length (L) Quinta Pro				
Diameter					
	30	45	65	90	115
80 mm	40 m	33 m	10 m	9 m	8 m
90 mm	40 m	40 m	18 m	16 m	12 m
100 mm	40 m	40 m	27 m	24 m	19 m
110 mm	40 m	40 m	40 m	40 m	37 m


■ Room sealed flue (C13, C33, C43, C63, C93)


If using a room sealed version, both the combustion gas exhaust opening and the air supply opening must be connected (concentrically). Refer to the table to determine the maximum pipe length of the flue gas pipes in room sealed operation.



To define the maximum final length, you must remove the pipe length in accordance with the reduction table.

Chimney length for room sealed operation					
Maximum length				gth (L)	
Diameter	Quinta Pro				
	30	45	65	90	115
80-125 mm	20 m	16 m	-	-	-
100-150 mm	20 m	20 m	13 m	13 m	7 m

■ Connection in areas of different pressure (C53, C83)

Combustion air supply and combustion gas discharge are possible in various pressure zones, semi-CLV systems. With the exception of coastal areas. The maximum permissible difference in height between the combustion air supply and the combustion gas discharge is 36 m.

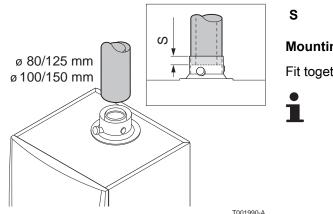
To define the maximum final length, you must remove the pipe length in accordance with the reduction table.

Chimney length in the various pressure zones					
		Maximum length (L)			
Diameter	Quinta Pro				
	30 45 65 90 115				
80 mm	20 m	20 m	-	-	-
90 mm	36 m	36 m	2 m	-	-
100 mm	36 m	36 m	8 m	4 m	-
110 mm	36 m	36 m	34 m	22 m	24 m
130 mm	36 m	36 m	36 m	36 m	36 m

Reduction table

Pipe reductions per element used				
Diameter	Elbow 45°			
Diameter	Pipe reduction	Pipe reduction		
80 -125 mm	1 m	2 m		
100 -150 mm	1 m	2 m		

Pipe reductions per element used				
Diameter	Elbow 45°	Elbow 90°		
Diameter	Pipe reduction	Pipe reduction		
80 mm	1,2 m	4,0 m		
90 mm	1,3 m	4,5 m		
100 mm	1,4 m	4,9 m		
110 mm	1,5 m	5,4 m		
130 mm	1,0 m	6,2 m		


4.7.4. Additional Directives

- Connection of the combustion gas exhaust directly to the buildings brick chimneys or flues is forbidden for condensation reasons.
- If flues or chimneys are to be used, they must have an airtight construction with thick walls and be made from rigid aluminium or stainless steel. Flexible supply flue pipes made from plastic or stainless steel are also permissible. Aluminium is permissible only if there is no contact between the building supply section and the combustion gas exhaust pipe.

- Always clean the ducts thoroughly in cases where lining pipes are used and/or a connection of the air-supply.
- It must be possible to inspect the flue or chimney.
- ▶ For long, aluminium, combustion-gas exhaust pipes it is initially necessary to consider the relatively high quantity of corrosive products which are brought together with the condensate from the exhaust pipe. The siphon on the equipment requires regular cleaning or, preferably, an additional condensate collector can be installed above the equipment.
- ► If the regular formation of surplus condensates is to be expected in the combusted gas discharge pipe (e.g. when the boiler is running on high and, consequently, the combusted gases can only be condensated in the boiler up to a point), we recommend constructing the combusted gas discharge pipe in stainless steel or synthetic materials. If aluminium is chosen, a high quality (approved brand) of aluminium must be used. The combusted gas discharge pipe must be sufficiently inclined towards the boiler (at least 50 mm per metre) and an adequate condensate collection tank and discharge system constructed (at least 1 m before the boiler opening). The condensates strainer must be inspected and, if necessary, cleanable. The elbows fitted must be at more than 90° to guarantee the provision of an adequate gradient and tightness on the lip rings.

Please contact us for further information.

4.7.5. Connection of the combustion gas exhaust pipe

Insertion depth 25 mm

Mounting

Fit together the combustion gas exhaust pipes, without welding.

- The pipes must allow no leakage of flue gases and be resistant to corrosion.
 - Connect the pipes together without stress between the sections.
 - The horizontal sections will be constructed with a gradient of 50 mm per metre: Boiler orientation.

Electrical connections 4.8

4.8.1. **Control unit**

The boiler is not live- and neutral-sensitive. The boiler is fully prewired. All external connections can be made on the connection connector (low voltage). The main characteristics of the control unit are described in the table below.

Power supply voltage	230 VAC/50Hz
Rating of the main fuse F1 (230 VAC)	6.3 AT
Fuse rating F2 (230 VAC)	2 AT
Fan	230 VAC

CAUTION

The following components of the appliance are at a voltage of 230 V:

- Electrical connection of the heating pump (Central heating).
- Electrical connection of the combined gas valve unit.
- Electrical connection of the fan.
- The majority of components in the control panel.
- Ignition transformer.
- Connection of the power supply cable.

CAUTION

When the power supply cable has to be replaced, it ١ must be ordered from Remeha.

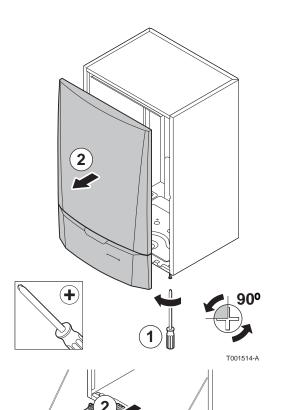
It is possible to connect various control, safety and regulation systems to the boiler. The standard control PCB can be extended with:

For the optional PCBs, see chapter: "Optional electrical connections", page 35

Recommendations 4.8.2.

WARNING

- Only qualified professionnals may carry out electrical ▶ connections, always with the power off.
- The boiler is entirely pre-wired. Do not modify the connections inside the control panel.
- Earth the appliance before making any electrical connections.

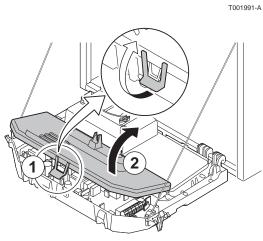

Make the electrical connections of the appliance according to:

- the instructions of the prevailing standards.
- the instructions on the circuit diagrams provided with the appliance.
- the recommendations in the instructions.

CAUTION

Separate the sensor cables from the 230 V cables.

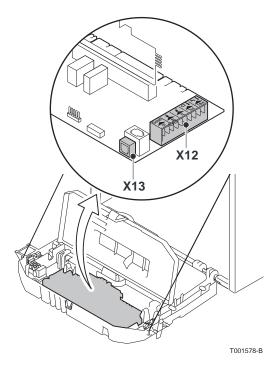
4.8.3. Standard control PCB


Various thermostats and controllers can be connected to the standard control PCB (PCU) (**X12** connector block).

Access to the connector block:

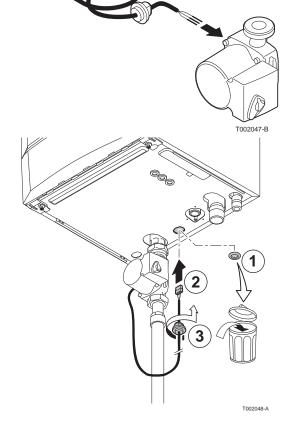
- 1. Unscrew the two screws located under the front panel by a quarter turn and remove the panel.
- 2. Guide the cables from the controller or thermostat through the round grommet(s) on the right in the boiler bottom plate.

3. Tilt the control box forwards by opening the holding clips located at the sides.


- 4. Open the tooling box by opening the clip fastener on the front side.
- 5. Run the connection cable(s) through the grommet(s) in the control unit box.
- 6. Unscrew the necessary cable clamps (to access the connector block) and introduce the cables.

T001577-A

1

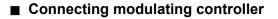

- 7. Connect the cable to the appropriate terminals on the connector block.
- 8. Firmly retighten the cable clamps and close the control box.

4.8.4. Connecting the pump

The pump must be connected to standard control PCB (PCU). To do this, proceed as follows:

1. Connect the cable, that is delivered with the boiler, to the pump.

2. Remove the grommet from the opening in the middle of the base of the boiler. Pass the pump connection cable through the base of the boiler and seal the opening again by tightening the bayonet fitting to the cable.


X81

A X81

- γIJ X8 X81 X81 T002050-C °00 T002049-B
 - 3. Connect the pump connection cable to the cable in the instrument box that is connected with connector **X8**.

4. Connect the pump connection cable to the cable bundle by opening and closing the cable bundle bands.

4.8.5. Connecting a third party control unit

OT OpenTherm regulator

The boiler is fitted with a **OpenTherm** connection as standard.

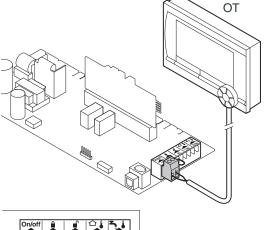
As a result, modulating **OpenTherm** controllers can be connected without further modifications (Room, weather-dependent and cascade controllers). The boiler is also suitable for **OpenTherm Smart Power**.

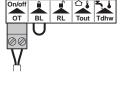
- In the case of a room controller: Install the regulator in the reference room (generally the living room).
- Connect the two-wire cable to terminals On/off-OT of the connector.

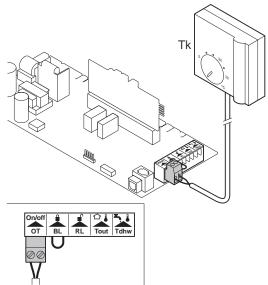
If the tap water temperature can be set on the **OpenTherm** controller, then the boiler supplies this temperature, with the set value on the boiler as the maximum.

Connect on/off thermostat

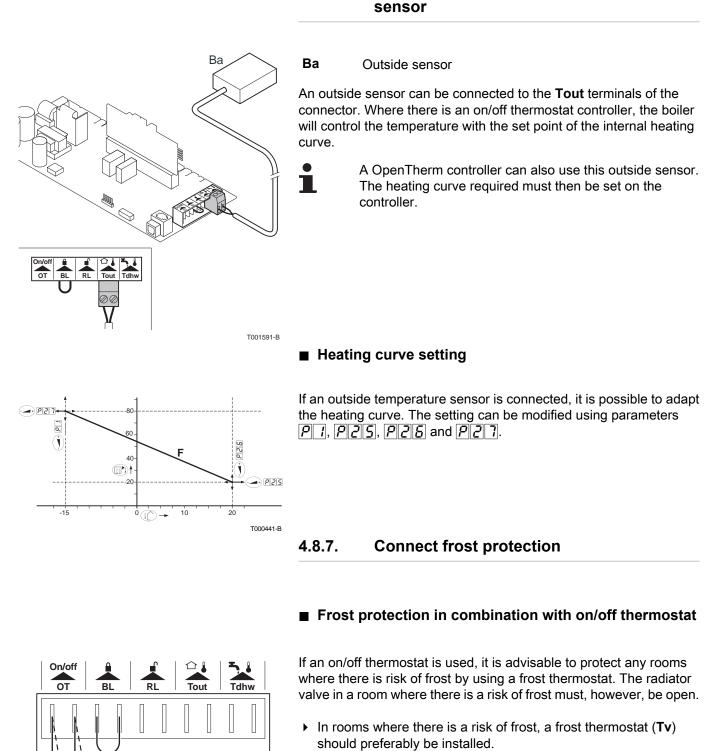
T000776-D


Tk ON/OFF room thermostat


The boiler is suitable for connection to a 2 wire on/off room thermostat.


- Install the regulator in the reference room (generally the living room).
- Connect the 2 wire 24V room thermostat to the On/off-OT terminals of the connector.
- Connect the power stealing thermostat to the On/off-OT terminals of the connector.

If a room thermostat with an anticipation element is used, this must be converted using parameter PS.


T001590-B

Connecting the outside temperature

4.8.6.

• Connect the frost thermostat in parallel with an on/off room thermostat (**Tk**) to the **On/off-OT** terminals of the connector.

When using a **OpenTherm** thermostat, a frost thermostat cannot be connected in parallel to the **On/off-OT** terminals. Implement frost protection for the central heating system in combination with an external sensor.

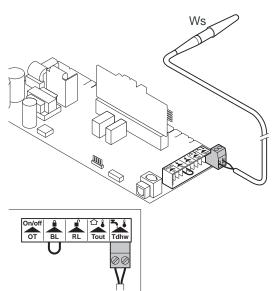
T000778-C

١

Tk

■ Frost protection in combination with an outside sensor

The central heating system can also be protected against frost in combination with an outside sensor. The radiator valve in a room where there is a risk of frost must, however, be open. Connect the outside sensor to the **Tout** terminals of the connector.

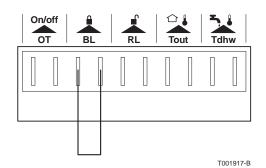

The frost protection functions as follows where an outside sensor is used:

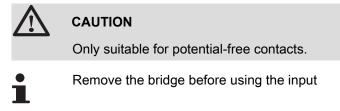
- At an outside temperature lower than -10°C (can be set with parameter P ∃ □): the circulation pump switches on.
- At an outside temperature higher than -10°C (can be set with parameter P ∃ D): the circulation pump continues to run and then switches off.

4.8.8. Connecting the calorifier sensor/ thermostat

Ws DHW sensor

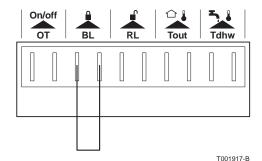
Connect the calorifier sensor or thermostat to the **Tdhw** terminals of the connector.


T000443-B


4.8.9. PC/Laptop connection

A PC or Laptop can be connected to the telephone connector using the optional **Recom** interface. Using the **Recom** PC/Laptop service software, you can enter, change and read out various boiler settings.

4.8.10. Shutdown input

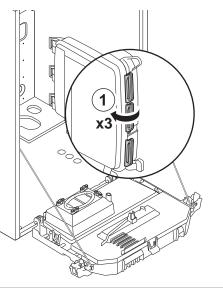

The boiler has a shutdown input. This input is on the **BL** terminals of the connector.

The behaviour of the input can be changed using parameter $P \exists B$.

See chapter: "Description of the parameters", page 56

4.8.11. Release input

The boiler has a release input. This input is on the **RL** terminals of the connector.

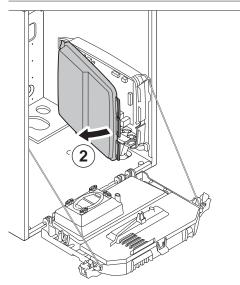

CAUTION

Only suitable for potential-free contacts.

The behaviour of the input can be changed using parameter P **3 7**.

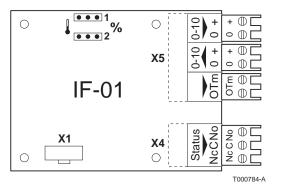
See chapter: "Description of the parameters", page 56

4.9 Optional electrical connections


4.9.1. Box for the control PCBs

The control PCBs are positioned in the housing for PCBs. See the instructions provided with the control PCB.

- 1. Unclip the PCB cover.
- 2. Remove the cover.



Control PCBs IF-01, SCU-S02 and SCU-X01 are already installed in the housing for PCBs.

T002862-A

4.9.2. Connection options for the 0-10 V control PCB (IF-01)

The IF-01 control PCB can be built into the instrument box or the housing for the control PCBs. Refer to the instructions supplied with the product.

CAUTION

Do not connect a frost thermostat or room thermostat to the boiler if using the 0-10 V control PCB.

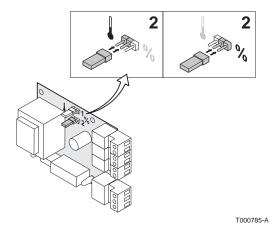
Connection status (Nc)

If the boiler locks out, a relay is de-energised and the alarm can be transmitted via a potential-free contact (maximum 230 V, 1A) on terminals \mathbf{Nc} and \mathbf{C} of the connector.

Connection (OTm)

The interface communicates with the boiler control via **OpenTherm**. The **OTm** connection must be connected to the **OpenTherm** input **OT** of the boiler control.

■ Analogue input (0-10 V)


This control can be based on temperature or heat output. The two controls are described briefly below. For analogue control, the 0-10 V signal must be connected to the interface.

Analogue temperature-based control (1)

The 0-10 V signal controls the boiler flow temperature between 0°C and 100°C. This control modulates on the basis of flow temperature, whereby the heat output varies between the minimum and maximum values on the basis of the flow temperature set point calculated by the controller.

A jumper (2) on the interface is used to select either temperature control ((1)) or heat output control (%).

Jumper 2	Input signal (V)	Temperature ℃	Description
	0 - 1,5	0 - 15	Boiler off
l	1,5 - 1,8	15 - 18	Hysteresis
	1,8 - 10	18 - 100	Temperature required

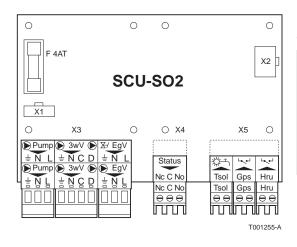
■ Analogue heat output-based control (%)

The 0-10V signal controls the boiler output between 0% and 100%. The minimum and maximum values are limited. The minimum output is linked to the boiler's modulation depth. The output varies between the minimum and maximum value on the basis of the value determined by the controller.

Jumper 2	Input signal (V)	Heat output (%)	Description
	0 - 2,0 ⁽¹⁾	0 - 20	Boiler off
%	2,0 - 2,2 ⁽¹⁾	20 - 22	Hysteresis
	2,0 - 10 ⁽¹⁾	20 - 100	Heat output requested
(1) Dependent on the minimum modulation depth (set speeds, standard 20%)			

Analogue output (0-10 V)

The temperature or heat output can be chosen for this feedback message. The two controls are described briefly below.

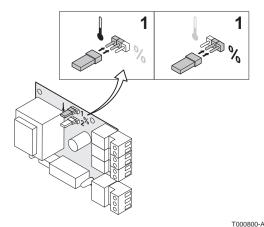

A jumper (1) on the interface is used to select either temperature control (1) or heat output control (%).

Jumper 1	Output signal (V)	Temperature ℃	Description
0	0,5	-	Alarm
	1 - 10	10 - 100	Delivered temperature

		(
0	0 - 15	Boiler off
0,5	15 - 20	Alarm
2,0 - 10 ⁽¹⁾	20 - 100	Heat output supplied
	2,0 - 10 ⁽¹⁾	0,5 15 - 20

(1) Dependent on the minimum modulation depth (set speeds, standard 20%)

4.9.3. Connection possibilities for the PCB (SCU-S02)


If the boiler is fitted with the control PCB (SCU-S02), then this is automatically recognised by the automatic control unit of the boiler.

CAUTION

On removing this PCB, the boiler will show fault code $[\underline{E}]: [\underline{B}] | \underline{B}]$. To prevent this fault, an auto-detect must be carried out after removing this PCB.

See chapter: "Carrying out an auto-detect", page 62.

Control of external central heating pump (Pump)

An external central heating pump can be connected to the **Pump** terminals of the connector. The maximum input power is 400 VA.

■ Control of external three-way valve (3wV)

The external three-way valve (230 VAC) can be used when connecting an indirectly heated calorifier. The neutral position of the three-way valve can be set using parameter $P \exists Y$.

The three-way valve is connected as follows:

- ► N = neutral
- C = central heating
- D = tank

Control of external gas valve (EgV)

If there is a heat demand, an alternating voltage of 230 VAC, 1 A (maximum) becomes available on the **EgV** terminals of the connector to control an external gas valve.

Operation signal and failure signal (Status)

The alarm or operation signal is selected using parameter $P \Psi G$.

- If the boiler is operating, the operation signal can be switched via a potential-free contact (maximum 230 VAC, 1 A) on the No and C terminals of the connector.
- If the boiler locks out, the alarm can be transmitted via a potentialfree contact (maximum 230 VAC, 1 A) on the Nc and C terminals of the connector.

Pressure switch minimum (Gps)

The minimum gas pressure switch shuts the boiler down if the inlet gas pressure becomes too low. Connect the minimum gas pressure switch to the **Gps** terminals of the connector. The presence of the gas pressure switch must be set using parameter P[4].

Heat Recovery Unit (Hru)

Connect the wires from the heat recovery unit to the **Hru** terminals of the connector. The presence of the heat recovery unit must be set using parameter $P[\Psi]$.

Tsol Gps Hru

SCU-S03 X2 X2a X2a X1 X2a Tsol Gps

T002879-A

4.9.4. Connection possibilities for the PCB (SCU-S03)

If the boiler is fitted with the control PCB (SCU-S03), then this is automatically recognised by the automatic control unit of the boiler.

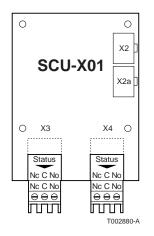
CAUTION

On removing this PCB, the boiler will show fault code $\underline{F}: \underline{J} \underline{B}$. To prevent this fault, an auto-detect must be carried out after removing this PCB.

See chapter: "Carrying out an auto-detect", page 62.

Pressure switch minimum (Gps)

The minimum gas pressure switch shuts the boiler down if the inlet gas pressure becomes too low. Connect the minimum gas pressure switch to the **Gps** terminals of the connector. The presence of the gas pressure switch must be set using parameter P[4].


Heat Recovery Unit (Hru)

Connect the wires from the heat recovery unit to the **Hru** terminals of the connector. The presence of the heat recovery unit must be set using parameter $P[\Psi|_{2}]$.

4.9.5. Connection possibilities for the PCB (SCU-X01)

The control PCB SCU-X01 has two potential-free contacts, which can be set as required. Depending on the setting, a maximum of two messages about the status of the boiler can be transmitted. See table below:

No.	C-NO	C-NC
0	Alarm Standby	Alarm Active
1	Alarm inverted = fail safe Active	Alarm inverted = fail safe Standby
2	Burning Standby	Burning Active
3	Burning inverted Active	Burning inverted Standby
4	Burning low Standby	Burning low Active
5	Burning high Standby	Burning high Active
6	Service report Standby	Service report Active
7	CH-mode Standby	CH-mode Active
8	DHW-mode Standby	DHW-mode Active
9	CH-pump Standby	CH-pump Active

4.9.6. Connection possibilities for the PCB (SCU-X02)

0 Ο 0 1 C 2 Jp1 <u>0 0 0</u> X1 F 2AT Х2 SCU-X02 X2a 0 0 \cap X3 () X4 ∑/ 3wV (►) 3wV 🗶 NLC ±NCD NLC 000 m T002884-A The connection options for the control PCB (SCU-X02) are described in the paragraphs which follow.

■ Control of external three-way valve (3wV (230 VAC)

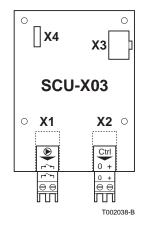
The external three-way valve (230 VAC) can be used when connecting an indirectly heated calorifier. The neutral position of the three-way valve can be set using parameter $P \exists Y$.

The three-way valve **X3** is connected to the **X3** terminals of the connector. The three-way valve is connected as follows:

- ► N = neutral
- C = central heating
- D = domestic hot water

■ Control of external three-way valve (3wV (24 VAC)

The external three-way valve (24 VAC) can be used when connecting an indirectly heated calorifier. The neutral position of the three-way valve can be set using parameter $|P||_{\mathcal{J}}||_{\mathcal{Y}}|$.


The three-way valve **X4** is connected to the **X4** terminals of the connector. The three-way valve is connected as follows:

- N = neutral
- ▶ L = live (24 AC)
- C = common (Central heating or DHW)

Position of the reversal valve (JP1)

The position of the three-way valve can be set using a jumper at **JP1**.

- Jumper 1: The settings for central heating and sanitary hot water are the default settings.
- Jumper 2: The settings for central heating and sanitary hot water are reversed.

4.9.7. Connection possibilities for the PCB (SCU-X03)

The control PCB SCU-X03 can control a modulating central heating pump. Depending on the make and type of pump, the pump can be controlled by a 0-10 V, 4-20 mA or PWM signal. The speed of the pump is modulated, based on the signal received from the boiler.

For correct connection of the pump, see the documentation supplied with the pump.

Connect on/off contact

Connect the on/off contact of the central heating pump to the connector **X1**.

CAUTION

Do not use the on/off contact to interrupt the power supply to the pump.

Connect central heating pump

The control system of the central heating pump is connected to connector **X2**.

Select the type of signal that will be received from the boiler using the rotary knob **SW1** on the control PCB. See table below:

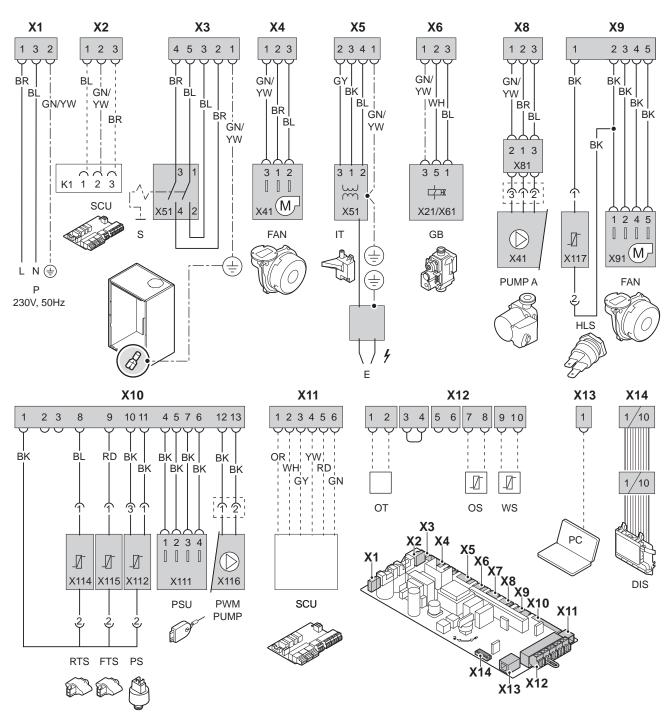
No.	Description
0	Pump modulation signal
1	Required heat output of boiler
2	Current heat output of boiler
3	-
4	-
5	-
6	-
7	-
8	-
9	-

- If possible, use the pump modulation signal. This provides the most accurate pump control.
- In positions 3 to 9 the control PCB receives no signal from the boiler and the boiler responds as in position 0.
- If the automatic burner unit does not support pump modulation, the pump will behave as an on/off pump.

Select the type of signal that controls the pump using the rotary knob **SW2** on the control PCB. See table below:

No.	Description
0	0-10 V (Wilo pump)
1	0-10 V (Grundfoss pump)
2	PWM
3	4-20 mA
4	-
5	-
6	-
7	-
8	-
9	-

CAUTION


In positions 4 to 9 the control PCB sends no signal to the pump and the pump will not start up.

4.9.8. Connection possibilities for the PCB (c-Mix)

The c-Mix print PCB can control two central heating groups or one central heating group and one calorifier. These groups can be controlled entirely independently of one another. It is also possible to use the c-Mix control PCB in combination with one or more boilers in a cascade system.

The connection options for the control PCB (c-Mix) are described in the supplied manual.

4.10 Electrical diagram

T002602-C

Ρ	Power supply	GB	Combined venturi and gas valve unit	PSU	Storage parameter
SCU	Extended control PCB	PUMP A	Shunt pump	ОТ	Thermostat
S	On/Off switch	HLS	Safety thermostat	OS	Outside sensor
FAN	Fan	RTS	Return sensor	WS	DHW sensor
IT	Ignition transformer	FTS	Flow sensor	PC	Connecting a computer
Е	Ignition power relay	PS	Pressure sensor	DIS	Display

4.11 Filling the system

4.11.1. Water treatment

In most cases, the boiler and the central heating installation can be filled with normal tap water and no water treatment will be necessary.

 Rinse the central heating installation with at least 3x the volume of the central heating installation. Flush the DHW pipes with at least 20 the volume of the pipes.

- Use only untreated tap water to fill or top up the level in the central heating installation.
- For untreated water, the pH value of the water in the installation must be between 7 and 9 and for treated water between 7 and 8.5. The maximum hardness of the water in the installation must be between 0.5 -20°dH.

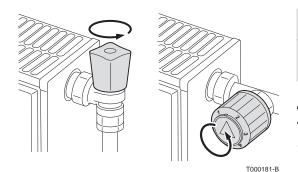
WARNING

For more information, refer to our publication water quality rules. The rules in the aforementioned document must be respected.

- Do not add chemical products to the central heating water without consulting **Remeha**. For example: antifreeze, water softeners, products to increase or reduce the pH value, chemical additives and/or inhibitors. These may cause faults in the boiler and damage the heat exchanger.
- ➤ The temperature of the central heating pipes and the radiators may reach 90°C.

4.11.2. Filling the siphon

- 1. Remove the siphon.
- 2. Fill the siphon with water. This must be completely filled.
- 3. Re-assemble the siphon.


CAUTION

Fill the water siphon before starting the boiler to avoid combustion products escaping from the boiler.

T002037-B

4.11.3. Filling the system

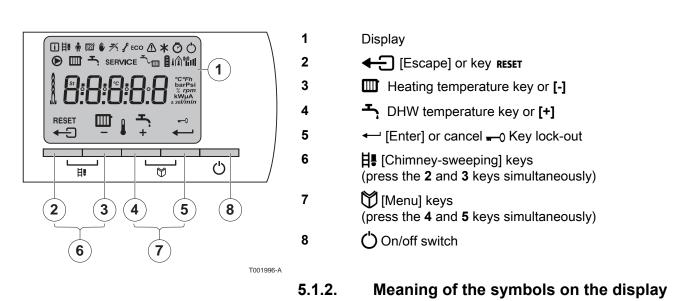
CAUTION

Before filling, open the valves on every radiator in the installation.

In order to be able to read off the water pressure from the boiler display, the boiler must be switched on.

- 1. Fill the system with clean tap water (advised water pressure is between 1.5 and 2 bar).
- 2. Check the tightness of the water connections.

After switching on the power and if there is adequate water pressure, the boiler always runs through an automatic venting program lasting approximately 3 minutes (During filling, air can escape from the system via the automatic air yent). If the water pressure is lower than 0.8 bar, the symbol will appear. If necessary, top up the water level in the heating system (recommended hydraulic pressure between 1.5 and 2 bar).



CAUTIONThe filling must be car

- The filling must be carried out within 30 minutes, otherwise the venting program starts and that would be undesirable if the device is not filled. Switch off the boiler if the central heating system is not being topped up immediately.
- When venting, prevent water from getting into the boiler casing and electrical parts of the boiler

5 Start-up

5.1 Control panel

i	Information menu: Reading the various current values.	Ċ	On/Off switch: After 5 lock-outs, the device must be switched off/on again.
目	Chimney-sweeping position: Forced full or part load for CO ₂ measurement.	€	Shunt pump: The pump operates.
Ĥ	User menu: Parameters at user level can be changed.		Central heating function: Access to central heating temperature parameter.
	Heating programme deactivated: The heating function is deactivated.	.	Sanitary hot water function: Access to sanitary hot water temperature parameter.
۴	Manual mode: Boiler is set to manual operation.	SERVICE	Yellow display with the symbols: f + service $+ R$ (Maintenance message).
≯	DHW programme deactivated: The DHW mode is deactivated.	┺	Water pressure: The water pressure is too low.
ł	Service menu: Parameters at installer level can be changed.	1	Battery symbol: Status of battery of wireless controller.
ECO	Energy-saving mode: Economic mode activated.	[®] ill	Signal strength symbol: Signal strength of the wireless controller.

5.1.1. Functions of the keys

♪	Fault: Boiler indicates a fault. This can be seen from the $\underline{\mathcal{F}}$ code and red display.	L	Burner level: Boiler is running at full or low load.
*	Frost protection: Boiler is running in frost protection mode.	 0	Locking the keys: Key lock-out is activated.
Ø	Hour counter menu: Readout of the operating hours, number of successful starts and hours on mains supply.		

5.2 Check points before commissioning

5.2.1. Preparing the boiler for commissioning

WARNING

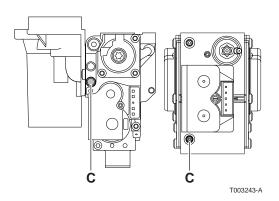
Do not put the boiler into operation if the supplied gas is not in accordance with the approved gas types.

Preparatory procedure for boiler commissioning:

- Check that the gas type supplied matches the data shown on the boiler's data plate.
- Check the gas circuit.
- Check the hydraulic circuit.
- Check the water pressure in the heating system.
- Check the electrical connections to the thermostat and the other external controls.
- Check the other connections.
- Test the boiler at full load. Check the setting of the gas/air ratio and, if necessary, correct it.
- Test the boiler at part load. Check the setting of the gas/air ratio and, if necessary, correct it.
- Finalizing work.

Complete the checklist.

See chapter: "Checklist for commissioning", page 86.


5.2.2. Gas circuit

WARNING

Ensure that the boiler is switched off.

- 1. Open the main gas supply.
- 2. Unscrew the two screws located under the front panel by a quarter turn and remove the panel.
- Tilt the control box forwards by opening the holding clips located at the sides.

4. Check the gas supply pressure at the measurement point **C** on the gas valve unit.

WARNING

To ascertain the gas types permitted, see chapter: "Equipment categories", page 8

- 5. Check the tightness of the gas connections made after the gas valve unit in the boiler.
- 6. Check the leak tightness of the gas inlet, including the gas valves. The test pressure must not exceed 60 mbar.
- 7. Purge the gas supply pipe within the boiler by unscrewing the measurement point on the gas block. Tighten the measurement point when the pipe has been sufficiently purged.
- 8. Check the tightness of the gas connections in the boiler.

5.2.3. Hydraulic circuit

- Check the syphon this must be completely filled with clean water.
- Check that there are no leaks on the hydraulic connections.

5.2.4. Electrical connections

- Check the electrical connections, particularly the earth.
- Check the electrical connections to the thermostat and the other external controls.

5.3 Putting the appliance into operation

WARNING

If adapting to another gas type i.e. propane, the gas valve must be adjusted before switching on the boiler.

See chapter: "Adapting to another gas type", page 50

- 1. Tilt the control box upwards again and fasten it using the clips located at the sides.
- 2. Open the main gas supply.
- 3. Open the gas valve on the boiler.
- 4. Switch on the electrical supply.
- 5. Turn on the boiler using the on/off switch.
- 6. Set the controls (thermostats, control system) so that they request heat.

 The start-up cycle begins and cannot be interrupted. During the start-up cycle, the display shows the following information: A short test where all segments of the display are visible.

F:XX:Software version

P: **X X** : Parameter version

The version numbers are displayed alternately.

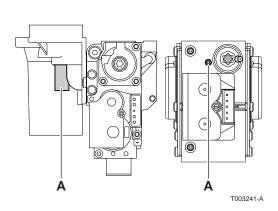
8. A vent cycle of a duration of around 3 minutes is carried out automatically.

If a DHW sensor is connected and the anti-legionella function is activated, the boiler starts to heat the water in the DHW tank as soon as the vent programme has been completed.

By pressing the \leftarrow key for a short time, the current operating status is shown on the display:

Heat demand 🎹	Heat demand stopped
🛿 : Fan ON	[]: Post-ventilation
2 : Boiler is igniting	S : Burner stop
	<u>5</u> : Post-circulation of the pump
3 : Heating System	🗓 : Standby

In addition to $\boxed{1}$, in STAND-BY the display normally shows the water pressure and the symbols $\boxed{1}$, $\frac{1}{2}$ and $\frac{1}{2}$.


Error during the start-up procedure:

- No information is shown on the display:
 Check the mains supply voltage
 - Check the main fuses
 - Check the fuses on the control panel:
 (F1 = 6,3 AT, F2 = 2 AT)
 - Check the connection of the mains lead to the connector X1 in the instrument box
- A fault is indicated on the display by the fault symbol
 A and a flashing fault code.
 - The meaning of the error codes is given in the error table.
 - Press for 3 seconds on key **RESET** to restart the boiler.

If the economy setting (eco setting) is on, then, after central heating operation, the boiler will not start to run for hot tap water production.

5.4 Gas settings

5.4.1. Adapting to another gas type

1.

WARNING

Only a qualified engineer may carry out the following operations.

The boiler is preset in the factory to operate on natural gas G20 (Gas H).

For operation on another group of gases, carry out the following operations. In case of functioning on propane:

Quinta Pro	For conversion to propane
30	Rotate the adjusting screw A on the venturi 3 ¹ / ₂ turns in a clockwise direction
45	Rotate the adjusting screw A on the venturi 4 ³ / ₄ turns in a clockwise direction
65	Rotate the adjusting screw A on the venturi 6½ turns in a clockwise direction
90	Fit the gas restrictor in the gas block
115	First turn the setting screw A clockwise until it is closed, then: Rotate the adjusting screw A on the gas block 3,5 - 4 turns in an anticlockwise direction

Regulate the fan speed as indicated in the table (if required). The setting can be modified using parameters *P* 17, *P* 18, *P* 19 and *P* 20:

 \blacksquare See chapter: "Description of the parameters", page 56

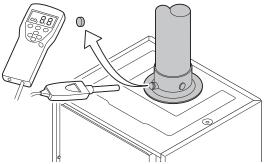
3. Set the air/gas ratio. For more detailed information:

See chapter: "Setting the air/gas ratio (Full load)", page 50

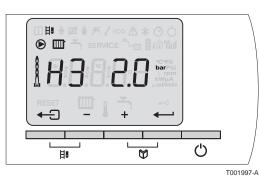
See chapter: "Setting the air/gas ratio (Part load)", page 51

5.4.2. Setting the air/gas ratio (Full load)

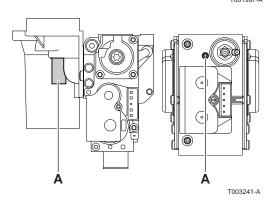
- 1. Unscrew the plug of the flue gas measurement point.
- 2. Connect the flue gas analyser.


WARNING

Ensure that the opening around the sensor is completely sealed when taking measurements.



CAUTION


The flue gas analyser must meet the requirements of BS 7927 or BS-EN 503793 and be calibrated according to the manufacturer's requirements.

. T001581-A

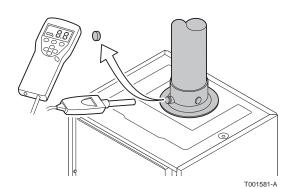
- 3. Set the boiler to full load. Press the two H∎ keys simultaneously. The display shows 𝔄 🔄. The symbol H∎ appears.
- 4. Measure the percentage of O_2 or CO_2 in the flue gases.
- 5. Compare the values measured with the checking values given in the table (Front panel removed).

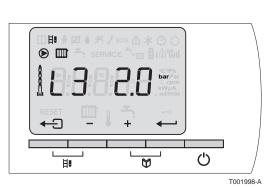
If necessary, adjust the gas/air ratio using the adjusting screw (A).

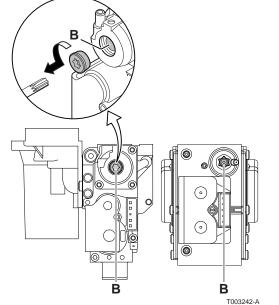
O_2/CO_2 control and setting values at full load for G20 (Gas H)						
Boiler type	Setting	g value	Checking value			
	O ₂ (%) CO ₂ (%)		O ₂ (%)	CO ₂ (%)		
Quinta Pro 30	4.8 ± 0.2	9.0 ± 0.1	4.8 ± 0.5	9.0 ± 0.2		
Quinta Pro 45	4.8 ± 0.2	±0.2 9.0±0.1 4.8±0.5		9.0 ± 0.2		
Quinta Pro 65	4.8 ± 0.2	9.0 ± 0.1	4.8 ± 0.5	9.0 ± 0.2		
Quinta Pro 90	3.9 ± 0.2	9.5 ± 0.1	3.9 ± 0.5	9.5 ± 0.2		
Quinta Pro 115	4.7 ± 0.2	9.1 ± 0.1	4.7 ± 0.5	9.1 ± 0.2		

O_2/CO_2 control and setting values at full load for G31 (Propane)							
Boiler type	Settin	g value	Check	ing value			
	O ₂ (%)	CO ₂ (%)	O ₂ (%)	CO ₂ (%)			
Quinta Pro 30	4.8 ± 0.2	10.7 ± 0.1	4.8 ± 0.5	10.7 ± 0.2			
Quinta Pro 45	4.8 ± 0.2	10.7 ± 0.1	4.8 ± 0.5	10.7 ± 0.2			
Quinta Pro 65	4.8 ± 0.2	10.7 ± 0.1	4.8 ± 0.5	10.7 ± 0.2			
Quinta Pro 90	4.8 ± 0.2	10.7 ± 0.1	4.8 ± 0.5	10.7 ± 0.2			
Quinta Pro 115	4.9 ± 0.2	10.5 ± 0.1	4.9 ± 0.5	10.5 ± 0.2			

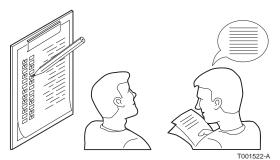
5.4.3. Setting the air/gas ratio (Part load)


1. Unscrew the plug of the flue gas measurement point.


2. Connect the flue gas analyser.


WARNING

Ensure that the opening around the sensor is completely sealed when taking measurements.


- 3. Set the boiler to part load. Press the **[-]** key several times until **[**] is displayed on the screen.
- 4. Measure the percentage of O_2 or CO_2 in the flue gases.
- 5. Compare the values measured with the checking values given in the table (Front panel removed).
- If necessary, adjust the gas/air ratio using the adjusting screw (B).

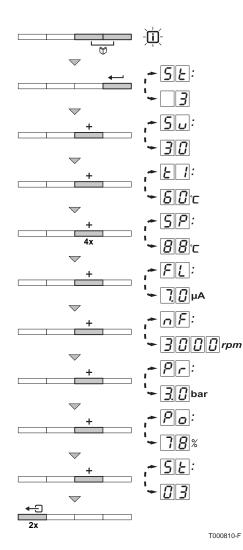
O_2/CO_2 control and setting values at part load for G20 (Gas H)						
Boiler type	Setting	g value	Checking value			
	O ₂ (%)	CO ₂ (%)	O ₂ (%)	CO ₂ (%)		
Quinta Pro 30	4.8 ± 0.2	9.0 ± 0.1	4.8 ± 0.5	9.0 ± 0.2		
Quinta Pro 45	4.8 ± 0.2	9.0 ± 0.1	4.8 ± 0.5	9.0 ± 0.2		
Quinta Pro 65	4.8 ± 0.2	9.0 ± 0.1	4.8 ± 0.5	9.0 ± 0.2		
Quinta Pro 90	3.9 ± 0.2	9.5 ± 0.1	3.9 ± 0.5	9.5 ± 0.2		
Quinta Pro 115	4.7 ± 0.2	9.1 ± 0.1	4.7 ± 0.5	9.1 ± 0.2		

O ₂ /CO ₂ control and setting values at part load for G31 (Propane)							
Boiler type	Settin	g value	Checking value				
	O ₂ (%)	CO ₂ (%)	O ₂ (%)	CO ₂ (%)			
Quinta Pro 30	4.8 ± 0.2	10.7 ± 0.1	4.8 ± 0.5	10.7 ± 0.2			
Quinta Pro 45	4.8 ± 0.2	10.7 ± 0.1	10.7 ± 0.2				
Quinta Pro 65	4.8 ± 0.2	10.7 ± 0.1	4.8 ± 0.5	10.7 ± 0.2			
Quinta Pro 90	4.8 ± 0.2	10.7 ± 0.1	4.8 ± 0.5	10.7 ± 0.2			
Quinta Pro 115	4.9 ± 0.2	10.5 ± 0.1	4.9 ± 0.5	10.5 ± 0.2			

5.5 Finalizing work

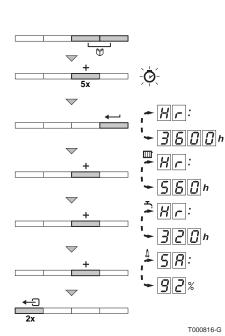
- 1. Remove the measuring equipment.
- 2. Put the flue gas sampling plug back in place.
- 3. Refit the front panel. Tighten the two screws by a quarter turn.
- 4. Push key **-** to return the boiler to normal operating mode.
- 5. Raise the temperature in the heating system to approximately 70°C.
- 6. Shut down the boiler.
- 7. After about 10 minutes, vent the air in the heating system.
- 8. Switch on the boiler.
- 9. Check the tightness of the connection for the evacuation of combustion gases and the air inlet.
- 10.Checking the hydraulic pressure. If necessary, top up the water level in the heating system (recommended hydraulic pressure between 1.5 and 2 bar).
- 11. Tick the gas category used on the data plate.
- 12.Explain the operation of the installation, the boiler and the regulator to the users.

IR remeha


5.6 Reading out measured values

The automatic control unit continuously measures various boiler parameters. These parameters can be read off the boiler control panel.

5.6.1. Reading the various current values


The following current values can be read off the information menu **[]**:

- ► <u>5</u> *E* = State.
- 5u = Sub-status.
- ► **E I** = Flow temperature (°C).
- ► <u>E</u> **2** = Return temperature (°C).
- \underline{E} = Calorifier temperature (°C).
- <u>E</u><u></u> = Outside temperature (°C) (Only with an outside temperature sensor).
- $\underline{E5}$ = Solar boiler temperature (°C).
- 5P = Internal set point (°C).
- FL = Ionisation current (µA).
- \overline{nF} = Fan speed in rpm.
- ▶ **P**_o = Supplied relative heat output (%).

The current values can be read as follows:

- 1. Press the two 🕅 keys simultaneously. The symbol 🚺 flashes.
- Confirm using key ← . <u>5</u> is displayed, alternating with the current status <u>3</u> (for example).
- 3. Press the [+] key. <u>5</u> u is displayed, alternating with the current sub-status <u>3</u> <u>0</u> (for example).
- Press the [+] key. E is displayed, alternating with the current flow temperature B 0°C (for example).
- 5. Press the **[+]** key successively to scroll down the various parameters. <u>E2</u>, <u>E3</u>, <u>E4</u>, <u>E5</u>.
- Press the [+] key. SP is displayed, alternating with the internal set point BB°C (for example).
- Press the [+] key. FL is displayed, alternating with the current ionisation current ID μA (for example).
- Press the [+] key. <u>F</u> is displayed, alternating with the current fan rotation speed <u>J</u> <u>D</u> <u>D</u> rpm (for example).
- Press the [+] key. Pr is displayed, alternating with the current water pressure 3 bar (for example). If no water pressure sensor is connected, [-.-] appears on the display.
- 10.Press the **[+]** key. **P** a is displayed, alternating with the current modulation percentage **? B** % (for example).
- 11.Press the [+] key. The readout cycle starts again with $\underline{S}\underline{E}$.
- 12. Press 2 times on key + to return to the current operating mode.

5.6.2. Readout from the hour counter and percentage of successful starts

- 1. Press the two keys Simultaneously and then key [+] until the symbol O flashes on the menu bar.
- Press the ← key. Hr and the number of hours of boiler operation 3600 (for example) are displayed alternately.
- 3. Press the **[+]** key. The display shows **(**. *H* **r**) is displayed, alternating with the number of operating hours in central heating operation **(5(b()(**for example).
- Press the [+] key. The display shows →. Hr is displayed, alternating with the number of operating hours used for heating tap water 320 (for example).
- Press the [+] key. The display shows ▲. S R is displayed, alternating with the percentage of successful starts 2 % (for example).
- 6. Press 2 times on key **-** to return to the current operating mode.

5.6.3. Status and sub-status

The information menu **i** gives the following status and sub-status numbers:

State 2	512	Sub-	status 5
0	Rest	0	Rest
1	Boiler start (Heat demand)		Anti-hunting
		2	Control three-way valve
		3	Start pump
		Ч	Wait for the correct temperatures for burner start
2	Burner start	10	Open flue gas damper/external gas valve
			Increase fan speed
		13	Pre-ventilation
		14	Wait for release signal
		15	Burner on
		7	Pre-ignition
		18	Main ignition
		19	Flame detection
		20	Intermediate ventilation
3/4	Burning for central heating operation	30	Temperature control
		31	Limited temperature control (ΔT Safety)
		32	Output control
		33	Increase protection level 1 (Modulate down)
		34	Increase protection level 2 (part load)
		35	Increase protection level 3 (Blockage)
		36	Modulate up for flame control
			Temperature Stabilisation time
		38	Cold start
5	Burner stop	ЧО	Burner off
		4	Post ventilation
		42	Close flue gas damper/external gas valve
		Ч3	Recirculation protection
			Stop fan
6	Boiler stop (End of heat demand)	60	Pump post circulation
			Pump off
		62	Control three-way valve
		63	Start anti-hunting
8	Stop	0	Wait for burner start
		1	Anti-hunting
9	Lock-out	XX	Shutdown code XX
7	Bleed	8	Rest
		2	Control three-way valve
		3	Start pump
		61	Pump off
		62	Control three-way valve

5.7 Changing the settings

The boiler control panel is set for the most common heating systems. With these settings, practically all heating systems operate correctly. The user or installer can optimise the parameters according to own preferences.

For operation in open vented systems, several parameter settings must be adjusted. Set the various parameters according to the values given in the table below.

5.7.1. Description of the parameters

	Description				Factory setting						
Parameter		Adjustment range		Quinta Pro							
			30	45	65	90	115				
P 1	Flow temperature: T _{SET}	20 to 90 °C			80						
P 1	Open vented: Flow temperature: T _{SET}	20 to 90 °C			75						
P2	Domestic hot water temperature: T _{SET}	40 to 65 °C			55						
P3	Heating / DHW mode	 0 = Heating deactivated / DHW deactivated 1 = Heating activated / DHW activated 2 = Heating activated / DHW deactivated 3 = Heating deactivated / DHW activated 			1						
PY	Mode ECO	0 = Comfort 1 = Energy-saving mode 2 = Management using a programmable thermostat	2								
P <u>S</u>	Anticipation resistance	0 = No anticipation resistance for the ON/OFF thermostat 1 = Anticipation resistance for the ON/OFF thermostat		0							
P 6	Display screen	0 = Simple 1 = Comprehensive 2 = Automatic switching to simple after 3 minutes 3 = Automatic switching to simple after 3 minutes ; Key blocking is active	2								
<i>P</i> 7	Post-circulation of the pump	1 to 98 minutes 99 minutes = continuous			3						
P 8	Brightness of display lighting	0 = Dimmed 1 = Bright	1								
P 1 7	Maximum fan speed (Heating)	G20 (Natural gas) ⁽¹⁾ (x100 rpm)	41	54	58	62	70				
		G31 (Propane) (x100 rpm)	36	54	58	60	67				
P 18	Maximum fan speed (DHW)	G20 (Natural gas) ⁽¹⁾ (x100 rpm)	41 54 58 62		62	70					
		G31 (Propane) (x100 rpm)	36	54	58	60	67				

			Factory setting						
Parameter	Description	Adjustment range	Quinta Pro						
				45	65	90	115		
P 19	Minimum fan speed (Heating	G20 (Natural gas) ⁽¹⁾ (x100 rpm)	16	16	16	15	18		
	+DHW)	G31 (Propane) (x100 rpm)	18	16	16	22	25		
P 19	Open vented: Minimum fan speed (Heating	G20 (Natural gas) ⁽¹⁾ (x100 rpm)	16	16	16	15	18		
	+DHW)	G31 (Propane) (x100 rpm)	18	16	16	22	18		
P20	Minimum fan speed (offset)	G20 (Natural gas) ⁽¹⁾ (x100 rpm)	0	0	0	50	0		
		G31 (Propane)	0	0	0	50	0		
P20	Open vented: Minimum fan speed (offset)	G20 (Natural gas) ⁽¹⁾ (x100 rpm)	0	0	0	50	0		
		G31 (Propane)	0	0	0	50	0		
P21	Start speed	Do not modify (x100 rpm)			25				
<i>P</i> 21	Open vented: Start speed	Do not modify (x100 rpm)			25				
922	Minimum water pressure	0 - 3 bar(x 0.1 bar)			8				
<i>P</i> 23	Maximum flow temperature of system	0 to 90 °C	90						
P24	Anti-hunting differential for central heating operation	-15 to 15 °C	3						
<i>P2</i> 5	Heat curve set point (Maximum outside temperature)	0 to 30 °C (Only with an outside temperature sensor)	20						
<i>P26</i>	Heat curve set point (Flow temperature)	0 to 90 °C (Only with an outside temperature sensor)	20						
<i>P</i> 2 7	Heat curve set point (Minimum outside temperature)	-30 to 0 °C (Only with an outside temperature sensor)	-15						
<i>P28</i>	Minimum pump speed for central heating operation Setting the pump speed	2 - 10 (x 10 %)	4						
<i>P29</i>	Maximum pump speed for central heating operation Setting the pump speed	2 - 10 (x 10 %)	10						
P 3 0	Antifreeze temperature	from - 30 to 0°C			-10)			
P 31	Legionella protection	0 = Stop 1 = Start (After commissioning, the boiler will operate once a week at 65°C for DHW) 3 = Management using a programmable thermostat	1						
<i>P32</i>	Set point increase for calorifier	0 to 20 °C	20						
P 3 3	DHW cut-in temperature DHW sensor	from 2 to 15°C	5						
<i>P</i> 3 4	Control of three-way valve	0 = Normal 1 = Reverse	0						
P 3 5	Boiler type	0 = Heating only 1 = Open vented	0						
P36	Shutdown input function	0 = Heating activated 1 = Shutdown without frost-protection 2 = Shutdown with frost protection 3 = Lock-out with frost protection (Pump only) y necessary. E.g. to adapt the boiler to: G31 (Propane)	1						

	Description				Factory setting						
Parameter		Adjustment range		Quinta Pro							
			30	45	65	90	115				
P 3 7	Release function	0 = Hot water on			1						
		1 = Release input									
P 3 8	Release waiting time	0 to 255 seconds			0						
P 3 9	Gas valve switching time	0 to 255 seconds			0						
РЧО	Fault relay function (Optional)	0 = Operation signal			1						
		1 = Alarm signal			1						
P 4 1	GpS connected (Optional)	0 = Not connected	0								
		1 = Connected	0								
РЧ2	HRU connected (Optional)	0 = Not connected	0								
	(Optional)	1 = Connected	0								
P 4 3	Mains detection phase	0 = Stop	0								
	Mains detection phase	1 = Start									
PYY	Maintenance message	Do not modify			1						
PYS	Service operating hours	Do not modify			175	,					
P46	Service burning hours	Do not modify	30								
R d	Detection of connected SCUs	0 = No detection	0								
		1 = Detection									
		To restore the factory settings or when replacing the									
<i>₫ F</i> and <i>₫ Ц</i>	Factory setting	main PCB, enter the values dF and dU from the type									
(1) Do not modify		plate in parameters <i>J</i> F and <i>J</i> U y necessary. E.g. to adapt the boiler to: G31 (Propane)			1						

5.7.2. Modification of the user-level parameters

Parameters P to P and B can be modified by the user in order to meet central heating and DHW comfort needs.

CAUTION

Modification of the factory settings may be detrimental to the functioning of the boiler.

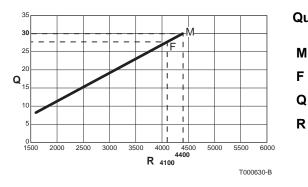
- 1. Press the two keys 🕅 simultaneously and then key [+] until the symbol 🛉 flashes on the menu bar.
- Select the users menu using the key ←. P: is displayed with
 I flashing.
- 3. Press the ← key a second time. .
- 4. Change the value by pressing the [-] or [+] key. In this example using key [-] to **b b** °C.
- 5. Confirm the value with the ← key. P: I is displayed with I flashing.
- 6. Press 2 times on key **-** to return to the current operating mode.

The parameters P i to PB are changed in the same way as P i. After step 2, use the [+] key to move to the required parameter.

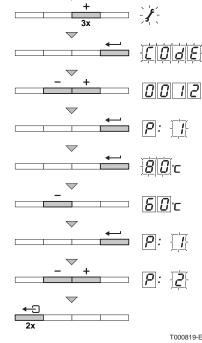
5.7.3. Modification of the installer-level parameters

Parameters P I to d F must only be modified by a qualified professional. To prevent unwanted settings, some parameter settings can only be changed after the special access code D D I Z is entered.

CAUTION


Modification of the factory settings may be detrimental to the functioning of the boiler.

- 1. Press the two keys 🕅 simultaneously and then key [+] until the symbol ⋠ flashes on the menu bar.
- Select the fitter menu using the ← key. [] [] d E appears on the display.
- 3. Use keys [-] or [+] to input the installer code **[] [] []**.
- 4. Confirm using key ← . P: I is displayed with I flashing.
- 5. Press the ← key a second time. .
- Change the value by pressing the [-] or [+] key. In this example using key [-] to [] C.
- Confirm the value with the ← key: P: I is displayed with I flashing.
- If necessary, set other parameters by selecting them using the [-] or [+] keys.
- 9. Press 2 times on key + to return to the current operating mode.


The boiler also returns to operating status if no keys are pressed for 3 minutes.

5.7.4. Setting the maximum heat input for central heating operation

Quinta Pro 30

- Maximum heat input
- Factory setting
- Power input (kW)
 - Fan rotation speed (rpm)

Quinta Pro 45

Μ

F

Q

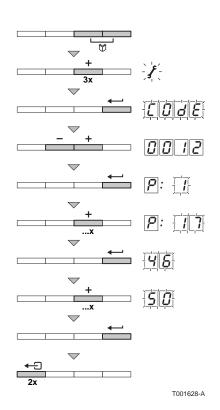
R

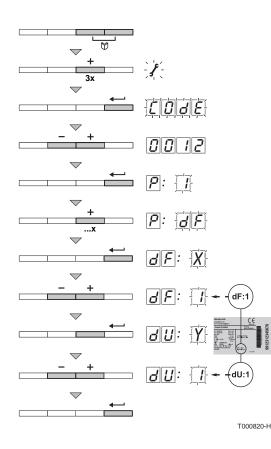
Maximum heat input

- Factory setting
- Power input (kW)
- Fan rotation speed (rpm)

Quinta Pro 65

М	Maximum heat input
F	Factory setting
Q	Power input (kW)
R	Fan rotation speed (rpm)

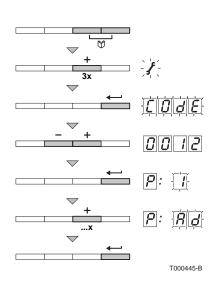

Quinta Pro 90

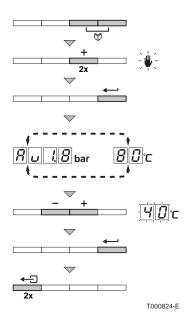

М	Maximum heat input
F	Factory setting
Q	Power input (kW)
R	Fan rotation speed (rpm)

Quinta Pro 115

Maximum heat input
Factory setting
Power input (kW)
Fan rotation speed (rpm)

See the graphs for the relationship between heat input and speed for natural gas. The speed can be changed using parameter P. To do this, proceed as follows:





- 1. Press the two keys ♥ simultaneously and then key [+] until the symbol ✓ flashes on the menu bar.
- 3. Use keys [-] or [+] to input the installer code **[]** [] 12.
- 4. Confirm using key ← . P: I is displayed with I flashing.
- 5. Press the **[+]** key to go to parameter P: I.
- 6. Confirm using key 🛀.
- 7. Press the **[+]** key to increase the speed from $\underline{\mathcal{H}}$ to, for example, $\underline{\mathcal{S}}$ (see the graphs for the associated heat output).
- 8. Confirm the value with the \leftarrow key.
- 9. Press 2 times on key + to return to the current operating mode.

5.7.5. Return to the factory settings "Reset Param"

- Press the two keys Simultaneously and then key [+] until the symbol f flashes on the menu bar.
- Select the installers menu using the key ← . [] [] d E appears on the display.
- 3. Use keys [-] or [+] to input the installer code $\square \square \square$.
- Confirm using key ←. P: I is displayed with I flashing.
- 5. Press the **[+]** key several times. **P**: **dF** is displayed with **dF** flashing.
- Press the ← key. A F : X is displayed with X flashing. This is the current value of X for dF. Check this against the value of X on the type plate.
- Enter the value of X shown on the type plate using the [-] or [+] key.
- Confirm the value with the ← key, dF:Y is displayed with Y flashing. This is the current value of Y for dU. Check this against the value of Y on the type plate.
- 9. Enter the value of Y shown on the type plate using the [-] or [+] key.
- 10.Confirm the value with the ← key. The factory settings are reset.
 11.The display returns to the current operating mode.

5.7.6. Carrying out an auto-detect

After removing a control PCB, an auto-detect must be carried out. To do this, proceed as follows:

- Press the two keys simultaneously and then key [+] until the symbol f flashes on the menu bar.
- 3. Use keys [-] or [+] to input the installer code $\square \square \square$.
- 4. Confirm using key ←. P: I is displayed with I flashing.
- 5. Press the [+] key several times. P: Rd is displayed with Rd flashing.
- 6. Confirm using key Auto-detect is carried out.
- 7. The display returns to the current operating mode.

5.7.7. Setting the manual mode

In some cases it may be necessary to switch the boiler to manual operation, For example, if the controller has not yet been connected. The boiler can be switched to automatic or manual operation under the symbol . To do this, proceed as follows:

- 1. Press the two keys 🕅 simultaneously and then key [+] until the symbol ⋕ flashes on the menu bar.
- Press the ← key:

or

The text \boxed{R} $\underline{\omega}$ with the current water pressure (only if an outside sensor is connected). The flow temperature is determined by the internal heating curve. **or**

The value of the minimum flow temperature.

- 3. Press the [-] or [+] key to increase this value temporarily in manual operation.
- Confirm the value with the ← key. The boiler is now set to manual operation.
- 5. Press 2 times on key **-** to return to the current operating mode.

6 Switching off the appliance

6.1 Installation shutdown

If the central heating system is not used for a long period, we recommend switching the boiler off.

- Switch the On/Off switch on Off.
- Isolate the gas supply.
- Ensure that the boiler and system are protected against frost damage.

6.2 Frost protection

CAUTION

Drain the boiler and central heating system if you are not going to use your home or the building for a long time and there is a chance of frost.

▶ Set the temperature control low, for example at 10°C.

To prevent radiators and the system from freezing in rooms where there is a risk of frost (e.g. a garage or storage room), a frost thermostat or outside sensor can be connected to the boiler.

See chapter: "Connect frost protection", page 32.

CAUTION

- The anitfreeze protection does not function if the boiler is switched off.
- The integrated protection system only protects the boiler, not the installation.

When the heating water temperature in the boiler falls by too much, the integrated protection system in the boiler starts up. This protection functions as follows:

- If the water temperature is lower than 7°C, the heating pump starts up.
- If the water temperature is lower than 4°C, the boiler starts up.
- If the water temperature is higher than 10°C, the boiler shuts down and the heating pump continues to run for a short time.

7 Checking and maintenance

7.1 Maintenance message

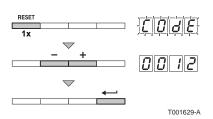
Boiler maintenance is kept to a minimum. Nevertheless, we recommend having the boiler inspected and serviced at regular intervals. To determine the best time for maintenance operations, the boiler is fitted with a function that automatically signals any maintenance to be carried out. The appearance if this service message on the boiler display is determined by the automatic control unit. Depending on the use of the boiler, the first maintenance message appears 3 years after installation of the boiler at the latest.

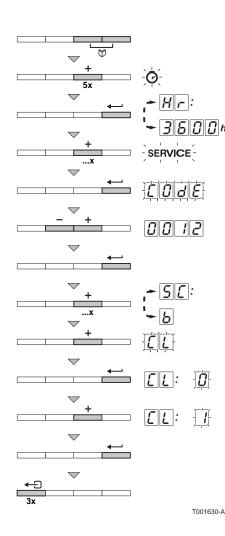
WARNING

- Maintenance operations must be done by a qualified engineer.
- An annual inspection is compulsory.
- Only original spare parts must be used.

7.2 Preventive maintenance with automated "service message"

When it is time to carry out maintenance on the boiler, the following instructions are shown on the display:


In a yellow display:


- ► The symbol
- The symbol service
- Maintenance message \overline{A} , \underline{b} or \underline{f}

Thanks to the automatically transmitted maintenance message, it is possible to carry out preventive maintenance and therefore use the maintenance kits defined by **Remeha**, thus reducing breakdowns to a minimum. The maintenance message indicates which kit should be used. These maintenance kits (A, B or C) are available from your spare parts supplier. If no other errors are noted during the inspection initiated subsequent to the maintenance message, these maintenance kits include all of the parts needed for the maintenance concerned (such as the gaskets, for example).

- When a maintenance message is displayed, it must be acted upon within the 2 months following the appearance of the message.
 - If the iSense modulating controller is connected to the device, then this service message is also passed to the iSense. In this way, the end user is requested to contact the installation company. See also the manual for the iSense controller.

CAUTION

Reset the maintenance message to zero after each inspection.

7.2.1. Resetting the automatic maintenance message

A service message on the boiler display must be reset by a qualified installer after the maintenance service has been carried out using the relevant service set. To do this, proceed as follows:

- When the maintenance message is displayed, press key **RESET** 1 time. <u>[]</u> <u>[]</u> <u>[]</u> <u>[]</u> <u>[]</u> appears on the display.
- 2. Use keys [-] or [+] to input the installer code DD ...
- 3. Confirm using key ← . The maintenance message is reset. The display returns to the current operating mode.

7.2.2. Dealing with the next maintenance message and starting the new maintenance period

For an interim service it is advisable to read out in the boiler service menu what maintenance service should be carried out. Use the indicated **Remeha** service sets (A, B or C). This service message must be prevented by carrying out a reset. Start the next service interval. To do this, proceed as follows:

- 1. Press the two keys 🕅 simultaneously and then key [+] until the symbol 🕐 flashes on the menu bar.
- Press the ← key. H r and the number of hours of boiler operation <u>3600</u> (for example) are displayed alternately.
- 3. Press key [+] several times until **SERVICE** flashes on the menu bar.
- 4. Press the ← key. **[] [] d E** appears on the display.
- 5. Use keys [-] or [+] to input the installer code $\square \square \square$.
- 6. Confirm using key 🛁.
- Press key [+] several times until 5 : b is displayed with b (for example) flashing To determine the best time to carry out maintenance, the boiler is fitted with a single automatic maintenance indicator.
- 8. Press the [+] key a second time. $\boxed{\underline{L}}$ appears on the display.
- 9. Press the ← key. [[] : [] is displayed with [] flashing.
- 10.Press key [+] to modify the value to].
- 11.Confirm using key ← . The new maintenance period begins.
- 12. Press 3 times on key + to return to the current operating mode.

- After a service complete the checklist.
- See chapter: "Checklist for periodic inspection and maintenance", page 87.

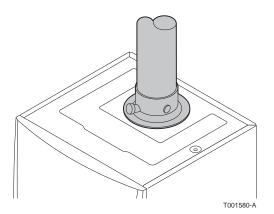
7.3 Standard inspection and maintenance operations

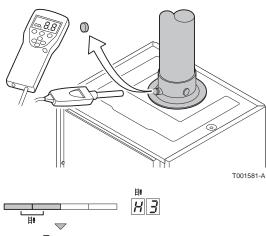
During inspection and maintenance operations, always replace all gaskets on the parts removed.

7.3.1. Checking the hydraulic pressure

The hydraulic pressure must reach a minimum of 0.8 bar. For open vented systems, the water pressure must be at least 0.3 bar (Q30/Q45/Q65/Q90) or 0.5 bar (Q115) bar. If the water pressure is too low, the symbol $\sqrt{2}$ will appear.

If necessary, top up the water level in the heating system (recommended hydraulic pressure between 1.5 and 2 bar).


7.3.2. Checking the ionisation current


Check the ionisation current at full load and low load. The value is stable after 1 minute. If the value is less than 4 μ A, clean or replace the ignition electrode.

See chapter: "Reading the various current values", page 53.

7.3.3. Checking the tightness of the combusted gases evacuation and air inlet connections

Check the tightness of the connection for the evacuation of combustion gases and the air inlet.

7.3.4. Checking combustion

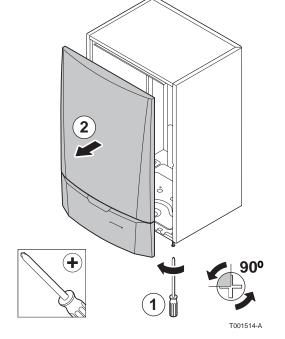
The check on combustion is done by measuring the percentage of O_2/CO_2 in the flue gas discharge flue. To do this, proceed as follows:

- 1. Unscrew the plug of the flue gas measurement point.
- 2. Connect the flue gas analyser.

CAUTION

Ensure that the opening around the sensor is completely sealed when taking measurements.

- 3. Set the boiler to full load. Press the two **H** keys simultaneously. The **H** symbol is visible on the menu bar and *H* appears in the display. The boiler is now operating at full load.
- 4. Measure the percentage of CO₂ and compare this value with the checking values given.


See chapter: "Setting the air/gas ratio (Full load)", page 50.

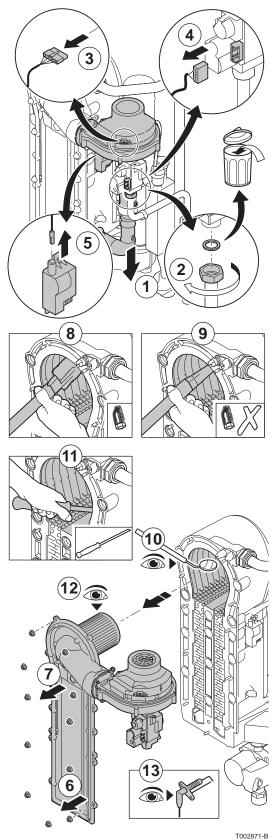
- Set the boiler to part load. Press the [-] key several times until [.]] is displayed on the screen. The boiler is now operating on part load.
- 6. Measure the percentage of CO₂ and compare this value with the checking values given.

See chapter: "Setting the air/gas ratio (Part load)", page 51.

7.3.5. Checking the automatic air vent

- 1. Switch off the boiler electrical power supply.
- 2. Close the gas valve on the boiler.
- 3. Close the main gas inlet valve.
- 4. Unscrew the two screws located under the front panel by a quarter turn and remove the panel.

- TO1914
- 5. Tilt the control box forwards by opening the holding clips located at the sides.


- 6. Check whether there is any water in the small hose on the automatic air vent.
- 7. If any leaks are detected, replace the air vent.

7.3.6. Checking the siphon

- 1. Remove the siphon and clean it.
- 2. Fill the siphon with water.
- 3. Put the siphon back in place.

IR remeha

T001582-A

7.3.7. Checking the burner and cleaning the heat exchanger

CAUTION

During inspection and maintenance operations, always replace all gaskets on the parts removed.

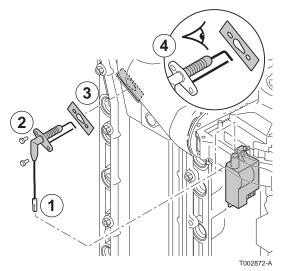
- 1. Remove the air inlet flue on the venturi.
- 2. Loosen the union on the gas block.
- 3. Remove the plugs from the fan.
- 4. Remove the plugs from the gas block.
- 5. Remove the ignition electrode plug from the ignition transformer.
- 6. Remove the front plate from the heat exchanger
- 7. Carefully lift the front plate including the burner and fan from the heat exchanger.
- 8. Use a vacuum cleaner fitted with a special endpiece (accessory) to clean the top part of the heat exchanger (combustion chamber).
- 9. Thoroughly clean with the vacuum cleaner again without the top cleaning brush on the endpiece.
- 10.Check (using a mirror, for example) whether any dust can still be seen. If so, hoover it up.
- 11.Clean the lowermost part of the heat exchanger with the special cleaning knife (accessory).
- 12. The burner does not require any maintenance, it is self-cleaning. If necessary, clean the cylindrical burner using compressed air Check that there are no cracks and/or other tears on the surface of the dismantled burner. If this is not the case, replace the burner.
- 13. Checking the ignition electrode / ionization sensor.
- 14.To re-assemble, perform the above actions in reverse order.

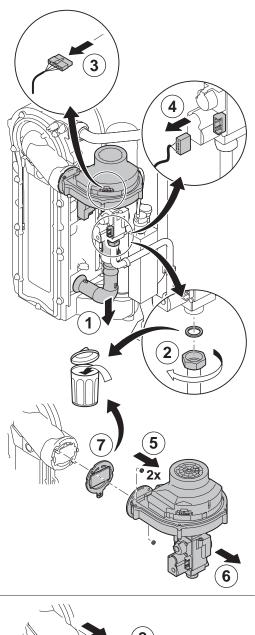
- Remember to reconnect the connector to the fan.
- Check that the gasket is correctly positioned between the mixing elbow and the heat exchanger. (Completely flat in the appropriate groove means it is leak proof).

15. Open the gas inlet valves and switch on the mains supply to the boiler.

7.4 Specific maintenance operations

If the standard inspection and maintenance operations have revealed the necessity to carry out additional maintenance work, proceed as follows, depending on the nature of the work:

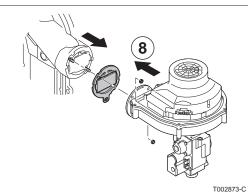

7.4.1. Inspection of the ignition electrode


1. Remove the ignition electrode plug from the ignition transformer.

The ignition cable is fixed to the ignition electrode and therefore may not be removed.

- 2. Unscrew the 2 screws. Remove the unit.
- 3. Wipe off all traces of deposits using an abrasive cloth.
- 4. Check the ignition electrode for wear. Replace if necessary.
- 5. Check the gasket.

6. Refit all parts, replacing those that are damaged.



7.4.2. Replacing the non-return valve

Replace the nonreturn valve when faulty or when the maintenance kit contains one. To do this, proceed as follows:

- 1. Remove the air inlet flue on the venturi.
- 2. Loosen the union on the gas block.
- 3. Remove the plugs from the fan.
- 4. Remove the ignition electrode plug from the ignition transformer.
- 5. Dismantle the fan.
- 6. Completely remove the fan/mixing elbow unit.
- 7. Replace the nonreturn valve located between the mixing elbow and the fan.
- 8. To re-assemble, perform the above actions in reverse order.

7.4.3. Assembling the boiler

1. Follow the procedure in reverse to re-assemble all of the components.

CAUTION

During inspection and maintenance operations, always replace all gaskets on the parts removed.

- 2. Fill the siphon with water.
- 3. Put the siphon back in place.
- 4. Carefully open the main water valve, fill the installation, vent it and, if need be, top it up with water.
- 5. Check the seals on the gas and water connections.
- 6. Switch the boiler back on.

T002874-C

After a service complete the checklist.

See chapter: "Checklist for periodic inspection and maintenance", page 87.

8 Troubleshooting

8.1 Error codes

The boiler is fitted with an electronic regulation and control unit. The heart of the control system is a microprocessor, the **Comfort Master**[©], which controls the boiler and also protects the boiler. If a fault is detected anywhere in the boiler, the boiler locks out and the display will show the fault code as follows:

In a red flashing display:

- ► The symbol ▲
- The symbol **RESET**
- ► The fault code (for example *E*: *□*)

The meaning of the error codes is given in the error table. To do this, proceed as follows:

• Note the error code displayed.

Ĺ

Press key **RESET** for 2 seconds. If the error code continues to display, search for the cause in the error table and apply the solution.

If the display does not show **RESET** but rather \bigcirc , the boiler must be switched off and then switched on again after 10 seconds before the fault can be reset.

Error code	Description	Probable causes Checking / solution					
E:00	Storage unit PSU parameter not found	Bad connection	Check the wiring				
E:01	The safety parameters	 Bad connection 	Check the wiring				
	are incorrect	 PSU defective 	Replace PSU				
	Flow temperature sensor short circuited	 Bad connection 	Check the wiring				
E:02		 Sensor fault 	• Check that the sensors are operating correctly				
		 Sensor not or badly 	Check that the sensor has been correctly fitted				
		connected	 Replace the sensor if necessary 				
	Flow temperature sensor open circuit	 Bad connection 	Check the wiring				
E:03		 Sensor fault 	 Check that the sensors are operating correctly 				
		 Sensor not or badly 	Check that the sensor has been correctly fitted				
		connected	 Replace the sensor if necessary 				

Error code	Description	Probable causes	Checking / solution
E:04 E:05	Temperature of heat exchanger too low Exchanger temperature too high	 Bad connection Sensor fault Sensor not or badly connected No circulation 	 Check the wiring Replace the sensor if necessary Vent the air in the heating system Check the circulation (direction, pump, valves) Check the water pressure Check that the sensors are operating correctly Check that the sensor has been correctly fitted Check the cleanliness of the heat exchanger
E:06	Return temperature sensor short circuited	 Bad connection Sensor fault Sensor not or badly connected 	 Check the wiring Check that the sensor has been correctly fitted Check that the sensors are operating correctly
E:07	Return temperature sensor open circuit	 Bad connection Sensor fault Sensor not or badly connected 	 Check the wiring Check that the sensor has been correctly fitted Check that the sensors are operating correctly
E:08 E:09	Return temperature too low Return temperature too high	 Bad connection Sensor fault Sensor not or badly connected No circulation 	 Check the wiring Replace the sensor if necessary Vent the air in the heating system Check the circulation (direction, pump, valves) Check the water pressure Check that the sensors are operating correctly Check that the sensor has been correctly fitted Check the cleanliness of the heat exchanger
E: 10 E: 11	Difference between the flow and return temperatures too great	 Sensor fault Sensor not or badly connected No circulation 	 Replace the sensor if necessary Vent the air in the heating system Check the circulation (direction, pump, valves) Check the water pressure Check that the sensors are operating correctly Check that the sensor has been correctly fitted Check the cleanliness of the heat exchanger Check that the heating pump is operating correctly
E: 12	Temperature of heat exchanger above normal range (high-limit thermostat STB)	 Bad connection Sensor fault Sensor not or badly connected No circulation 	 Check that the heating pump is operating concertly Check the wiring Replace the sensor if necessary Vent the air in the heating system Check the circulation (direction, pump, valves) Check the water pressure Check that the sensors are operating correctly Check that the sensor has been correctly fitted Check the cleanliness of the heat exchanger

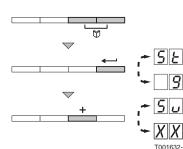
Error code	Description	Probable causes	Checking / solution
		 Absence of ignition arch 	 Check cabling of ignition transformer Check the ionisation/ignition electrode Check breakdown to earth Check the condition of the burner set Check the earthing Defective control SU PCB Purge the gas supply to remove air Check that the gas valve is fully opened Check the supply prossure
E: 14	5 burner start-up failures	 Presence of the ignition arc but no flame formation 	 Check the supply pressure Check the operation and setting of the gas valve unit Check that the air inlet and flue gas discharge flues are not blocked Check the wiring on the gas valve unit Defective control SU PCB
		 Presence of the flame but insufficient ionization (<3 µA) 	 Check that the gas valve is fully opened Check the supply pressure Check the ionisation/ignition electrode Check the earthing Check the wiring on the ionisation/ignition electrode
E: 16	False flame signal	 Ionisation current present when there should not be a flame Ignition transformer defective Gas valve defective The burner remains very hot: CO₂ too high 	 Check the ionisation/ignition electrode Check the gas valve and replace if necessary Set the CO₂
E:17	Problem on the gas valve SU PCB	Bad connectionDefective SU PCB	 Check the wiring Inspect the SU PCB and replace it if need be
E:34	Fan fault	Bad connectionFan defective	 Check the wiring Replace the fan if need be Check for adequate draw on the chimney connection
<i>E:3</i> 5	Flow and return reversed	 Bad connection Sensor fault Sensor not or badly connected Water circulation direction reversed 	 Replace the sensor if necessary Check the circulation (direction, pump, valves) Check that the sensors are operating correctly Check that the sensor has been correctly fitted
E:36			 Purge the gas supply to remove air Check that the gas valve is fully opened Check the supply pressure Check the operation and setting of the gas valve unit Check that the air inlet and flue gas discharge flues are not blocked Check that there is no recirculation of flue gases
E:37	Communication error with the SU PCB	Bad connection	 Check whether the SU PCB has been correctly fitted in the connector on PCU PCB

Error code	Description	Probable causes		Che	ecking / solution
E:38	Communication error with the SCU PCB	•	Bad connection	•	Check the wiring
		•	Defective SCU PCB	•	Replace SCU PCB
	Shutdown input in locked-out mode	•	Bad connection	•	Check the wiring
E:39		•	External cause	•	Suppress the external cause
		•	Parameter incorrectly set	•	Check the parameters
	HRU/URC unit test error	•	Bad connection	•	Check the wiring
E:40		•	External cause	•	Suppress the external cause
			Parameter incorrectly set	•	Check the parameters

8.2 Shutdowns and lock-outs

8.2.1. Blockage

If the blocking conditions still exist after several start up attempts, the boiler will switch into locking mode (fault). The boiler can only start operating again once the causes of the lock-out have been rectified and after pressing the **equal** key.


8.2.2. Lock-out

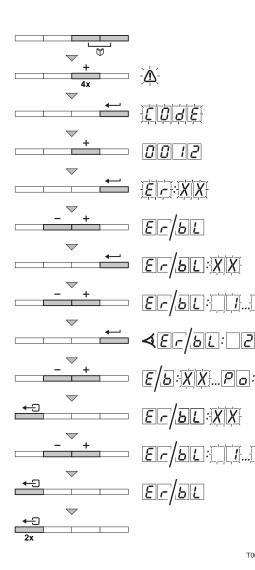
A (temporary)blocking mode is a boiler operating function caused by an unusual situation. In this case, the display gives a code of blocking (code $\underline{G}[\underline{E}]:[\underline{G}]$). The boiler control will try to re-start several times. The boiler will start up again after the blocking conditions have been eliminated. The shutdown codes can be read out as follows:

- 1. Press the two \bigotimes keys simultaneously.
- 2. Confirm by pressing key ← . <u>5</u> *E* is displayed, alternating with the shutdown code <u>9</u>.
- 3. Press the [+] key. 5μ appears on the display.

The boiler starts up again automatically when the reason for the blocking has been removed.

Shutdown code	Description	Probable causes	Checking / solution
5u:0	Parameter error	 Parameter error on the PSU PCB 	► Reset <u>d</u> F and <u>d</u> U
5u: 1	Maximum flow temperature	 Non-existent or 	 Restore parameters with Recom Check the circulation (direction, pump, valves)
	exceeded	insufficient circulation	 Reasons for the heat demand
			 Check the circulation (direction, pump, valves)
	Maximum increase of the	 Non-existent or 	Check the water pressure
5u:2	flow temperature has been	insufficient circulation	 Check that the sensors are operating correctly
	exceeded	 Sensor error 	 Check that the sensor has been correctly fitted
			Check the cleanliness of the heat exchanger
			 Check the circulation (direction, pump, valves)
	Maximum difference	 Non-existent or 	Check the water pressure
7 : س	between the flow and return temperature exceeded	insufficient circulation Sensor error	 Check that the sensors are operating correctly
			 Check that the sensor has been correctly fitted
			Check the cleanliness of the heat exchanger
		External cause	Suppress the external cause
5u:8	No release signal	Parameter error	Check the parameters
		Bad connection	Check the wiring
	Phase and neutral of mains supply mixed up	 Mains supply incorrectly wired 	 Phase and neutral mixed up
5u:9		 Floating or 2 phase network 	► Set parameter P 4 3 to D
		 External cause 	Suppress the external cause
5u:10	Shutdown input is open	 Parameter error 	Check the parameters
		 Bad connection 	Check the wiring
	Chutdown innut optive or front	 External cause 	 Suppress the external cause
5u:11	Shutdown input active or frost protection active	 Parameter error 	Check the parameters
	r	 Bad connection 	Check the wiring
	Communication error with the	 Bad connection with BUS 	► Check the wiring
5u:13	SCU PCB	 SCU PCB not installed in the boiler 	Carry out automatic detection
		Non ovistant or	• Check that the gas valve is fully opened
		 Non-existent or insufficient circulation 	 Check the supply pressure
5u:15	Gas pressure too low	 Incorrect setting of the 	Check whether the Gps gas pressure control
		Gps gas pressure switch	system has been correctly fitted
		on the SCU PCB	 Replace the Gps gas pressure control system if need be
5 <i>u:15</i> ⁽¹⁾	Configuration fault or SU PCB not recognised	 Wrong SU PCB for this boiler 	Replace the SU PCB
5 u: 17 (1)	Configuration fault or default parameter table incorrect	 Parameter error on the PCU PCB 	Replace the PCU PCB
5 u: 18 (1)	Configuration fault or PSU PCB not recognised	 Wrong PCU PCB for this boiler 	Replace the PCU PCB
Su: 19 (1)	Configuration fault or parameters <u></u> F- <u></u> U unknown	▶ Reset <i>d F</i> and <i>d</i> <u>U</u>	
(1) These lock-o	buts are not stored in the fault mem	ory	

Shutdown code	Description	Probable causes	Checking / solution		
5 <i>u</i> :20 ⁽¹⁾	Configuration procedure active	 Active for a short time after switching on the boiler 	 No action required 		
5u:21	Communication error with the SU PCB	Bad connection	 Check whether the PCU PCB has been correctly fitted in the connector on SU PCB 		
Su:22	No flame during operation	 No ionization current 	 Purge the gas supply to remove air Check that the gas valve is fully opened Check the supply pressure Check the operation and setting of the gas valve unit Check that the air inlet and flue gas discharge flues are not blocked Check that there is no recirculation of flue gases 		
Su:25	Internal error on the SU PCB		Replace the SU PCB		
(1) These lock-c	buts are not stored in the fault mem	ory			

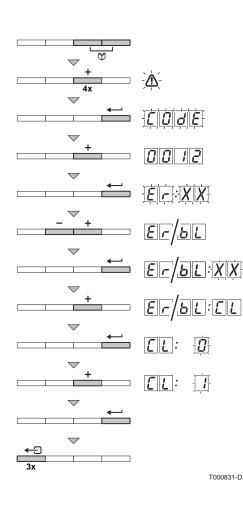

8.3 Error memory

The boiler control is equipped with an error memory. The last 16 errors encountered are recorded in this memory.

In addition to the error codes, the following data are also saved:

- Number of times that the error occured: (n : X | X).
- Boiler operating mode selected $(\underline{S} \underline{k} : \underline{X} \underline{X})$.
- The flow temperature $(\underline{\mathcal{F}} : \underline{\mathcal{I}} : \underline{\mathcal{X}} | \underline{\mathcal{X}})$ and the return temperature $(\underline{\mathcal{F}} : \underline{\mathcal{I}} : \underline{\mathcal{X}} | \underline{\mathcal{X}})$ when the error occured.

To view the error memory, you first have to enter access code $\boxed{D \ 1 \ 2}$.


8.3.1. Error readout memorised

- 1. Press the two keys 🕅 simultaneously and then key [+] until the symbol **A** flashes on the menu bar.
- 2. Select the installers menu using the key \leftarrow . [D] d E appears on the display.
- 3. Use keys [-] or [+] to input the installer code **D D I Z**.
- 4. Press the \leftarrow key. $\not{E} \mid \overrightarrow{X} \mid \overrightarrow{X} \mid$ appears on the display.
- 5. The fault list or shutdown list can be displayed by pressing the [-] or [+] key..
- 6. Confirm using key ←. *E r* : *X X* is displayed with *X X* flashing = Last error which occured, For example $\boxed{2}$.
- 7. Use the [-] or [+] key to scroll through the faults or shutdowns.
- 8. Press the key to display the details of the faults or shutdowns.
- 9. Press the [-] or [+] key to view the following information:
 - \mathbf{n} : \mathbf{l} = Number of times that the error occured.
 - H[r] = The number of operating hours.
 - E = State.

1 1 1 1 1 1 1 1

[]

- 5 5 5 = Sub-status. U
- I = Flow temperature (°C). F
 - **2** = Return temperature (°C).
- **3** = Calorifier temperature (°C).
- 4 = Outside temperature (°C) (Only with an outside
- temperature sensor).
- *E* 5 = Solar boiler temperature (°C).
- 5 P = Internal set point (°C).
- FL = Ionisation current (µA).
- \overline{Pr} = Fan speed in rpm. \overline{Pr} = Water pressure (bar).
- $P_{\mathbf{O}}$ = Supplied relative heat output (%).
- 10. Press the \leftarrow key to interrupt the display cycle. $\not{\epsilon} = \langle X | X \rangle$ is displayed with X X flashing = Last error which occured.
- T001530-B 11.Use the [-] or [+] key to scroll through the faults or shutdowns.
 - 12.Press the + key to show the fault list or shutdown list.
 - 13.Press + times on the key 2 to exit the error memory.

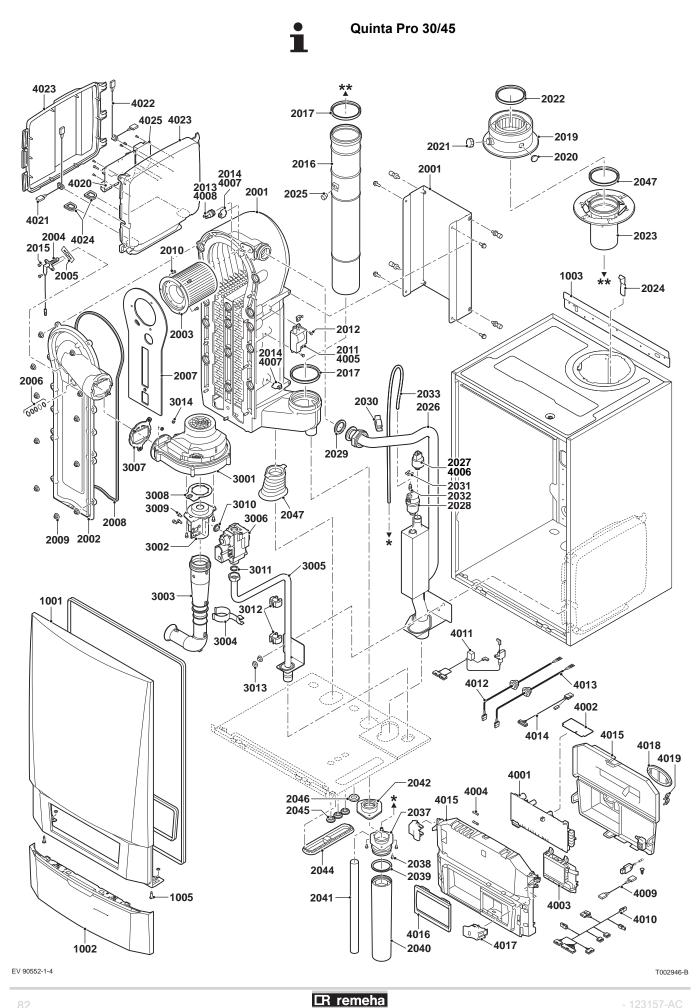
8.3.2. Deletion of the error display

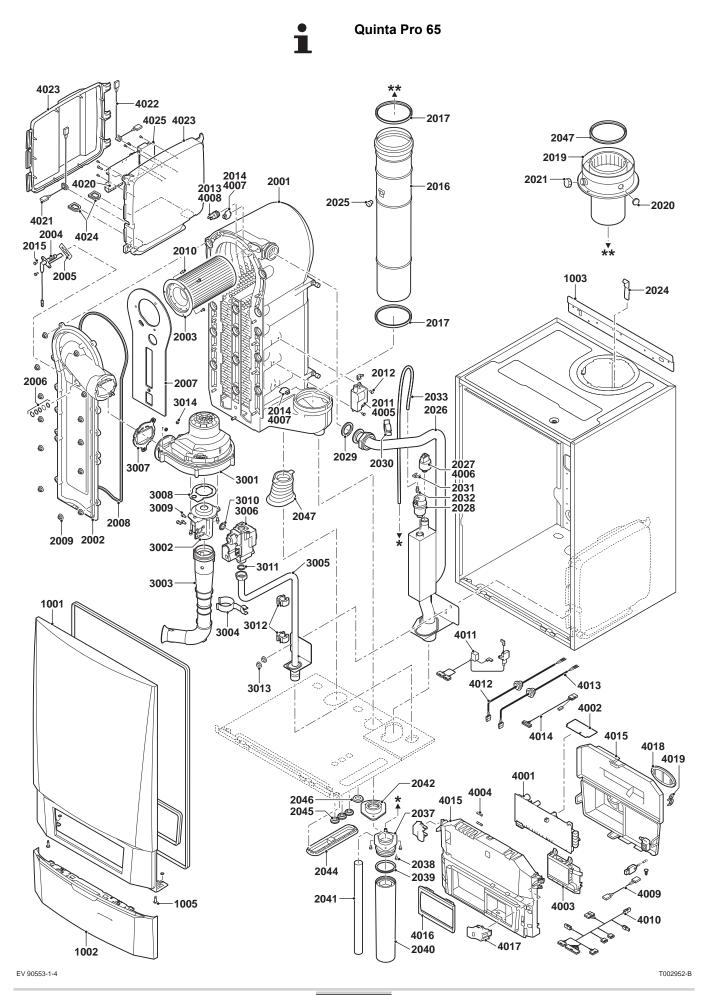
- 1. Press the two keys 🕅 simultaneously and then key [+] until the symbol \Lambda flashes on the menu bar.
- 3. Use keys [-] or [+] to input the installer code **[]** [] 12.
- 4. Press the \leftarrow key. $\overline{\mathcal{E}} \upharpoonright \overline{\mathcal{X}} | \overline{\mathcal{X}}$ appears on the display.
- 5. The fault list or shutdown list can be displayed by pressing the **[-]** or **[+]** key..
- 6. Confirm using key \leftarrow . $E : X \times I$ is displayed with $X \times I$ flashing.
- Press the [+] key several times until Er: L is displayed on the screen.
- 8. Press the ← key. [[] L:[] is displayed with [] flashing.
- 9. Press key [+] to modify the value to \square .
- 10.Press the \leftarrow key to delete the errors from the error memory.
- 11.Press + times on the key 3 to exit the error memory.

9 Spare parts

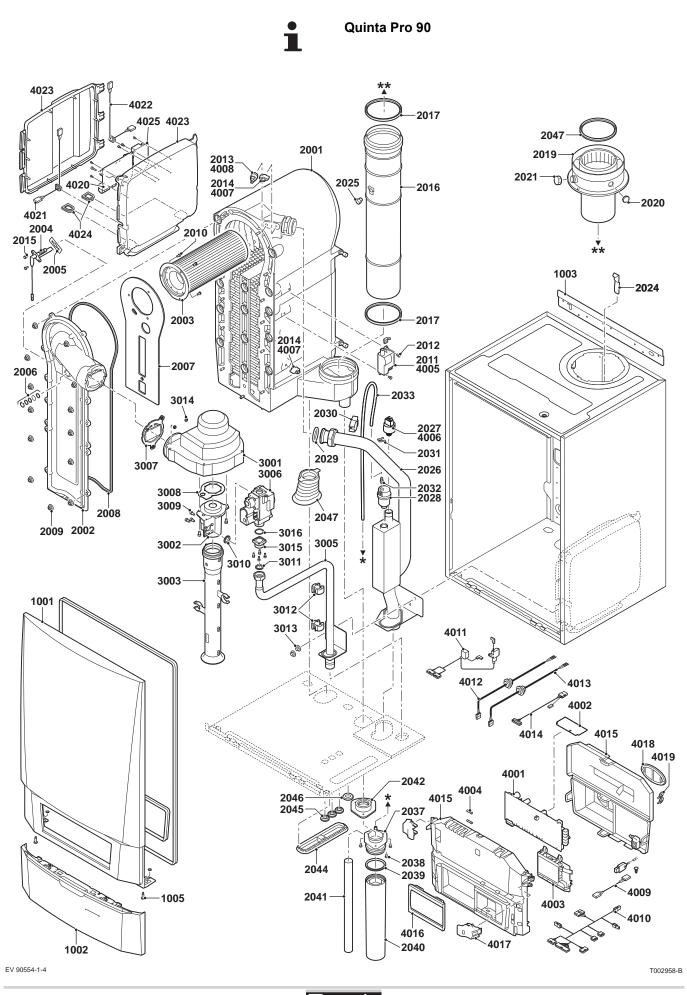
9.1 General

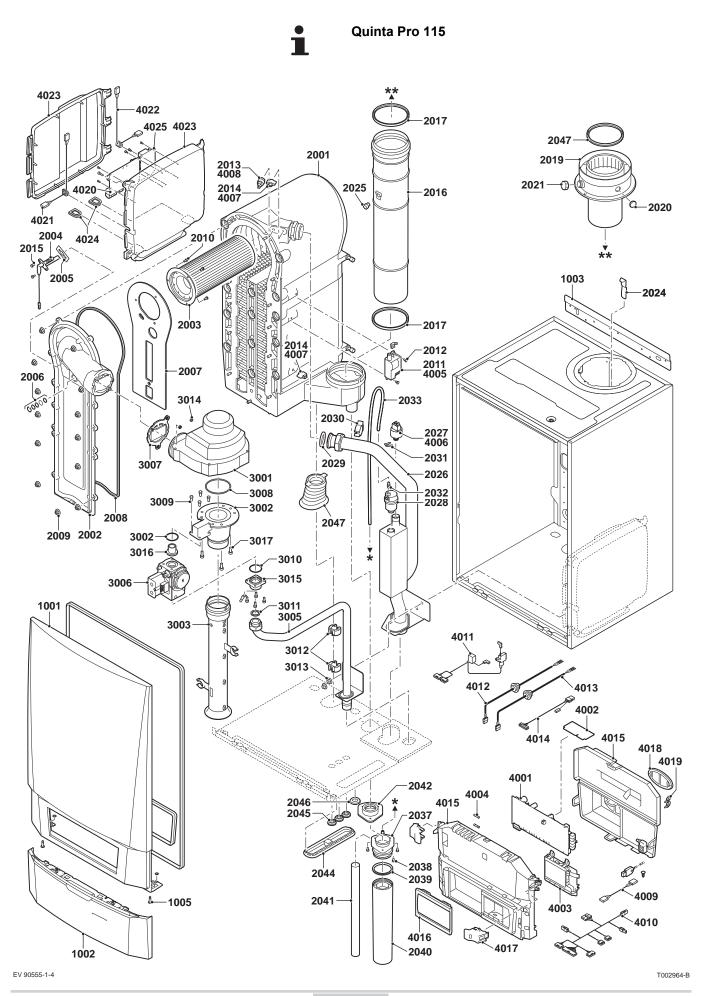
When it is observed subsequent to inspection or maintenance work that a component in the boiler needs to be replaced, use only original spare parts or recommended spare parts and equipment.


Send the component to be replaced to your supplier's Returned Goods Department if the component in queston is under warranty (see general terms and conditions of sale and delivery).



Always ensure that your return package is accompanied by the duly completed return form, see attached example. In this way, your supplier can fulfil his warranty obligations more easily and more effectively.


Customer						
Reference				Date		
Name						
Address						
Town/Postcode						
Telephone						
Contact person						
Order number						
	-					
Code no.	Description	Serial number ⁽¹⁾	Туре	Installation date	Reason for the exchange	Reference
(1) This information		on the data plate affix	ed to th	e top of the boiler		


9.2 Spare parts

LR remeha

- 123157-AC

LR remeha

10 Checklists

10.1 Checklist for commissioning

No.	Work to be undertaken for commissioning	Attachment / Measured values
1	Filling the central heating system with water and checking the water pressure	
2	Fill the siphon with water	
3	Vent the air in the heating system	
4	Checking the water-side connections for tightness	
5	Checking the type of gas supplied. Checking that the boiler is suitable for the gas supplied?	
6	Checking the gas supply pressure	
7	Checking the capacity of the gas meter	
8	Checking the tightness of the connections and the gas pipes	
9	Purge the gas supply pipe of the boiler	
10	Checking the electrical connections	
11	Checking the air supply connections and flue gas discharge connections	
12	Checking the functioning and operational status of the boiler	
13	Checking the air/gas ratio	
14	Remove the measuring device and close the measurement points	
15	Correctly fit the front housing of the boiler	
16	Attaching the "Gas Type" sticker	
17	Set the room thermostat or the regulator	
18	Instruct the user and hand over the necessary documents	
19	Fill in the guarantee card together with the user	
20	Confirmation of commissioning	
	Date	(dd-mm-jj)
	Company name, signature of engineer	

10.2 Checklist for periodic inspection and maintenance

Ins	pection and/or service activities	Confirmation and date					
1	Checking the hydraulic pressure (Recommendation: 1,5 to 2 bar)						
2	Checking the tightness of the combusted gases evacuation and air inlet connections						
3	Checking the automatic air vent						
4	Checking the safety valve						
5	Checking the siphon						
6	Checking the ionisation current						
7	Checking the burner and heat exchanger (cv)						
8	Inspection of the ionisation electrode/ignition electrode						
9	Assembling the boiler (Replace all sealing that was removed)						
10	Filling and refitting the syphon						
11	Checking the tightness of the combusted gases evacuation and air inlet connections						
12	Checking combustion (CO ₂) (Full load/Part load)						
13	Number of operating hours						
14	Number of successful starts (%)						
15	Service message deleted or service indicator reset						
16	Remeha service set A, B, C used						
17	Boiler visually inspected						
18	Extra maintenance work that was undertaken						
19	Confirmation of inspection						
	Date	(dd-mm-jj)	(dd-mm-jj)	(dd-mm-jj)	(dd-mm-jj)	(dd-mm-jj)	
	Company name, signature of engineer						

Broag Ltd. Remeha House Molly Millars Lane RG41 2QP WOKINGHAM, Berks.

Tel: +44 118 9783434 Fax: +44 118 9786977 Internet: uk.remeha.com E-mail: boilers@broag-remeha.com

© Copyright

All technical and technological information contained in these technical instructions, as well as any drawings and technical descriptions supplied, remain our property and shall not be multiplied without our prior consent in writing.

